appendix f

swat modeling of the st. joseph river watershed

michigan and indiana

DRAFT

SWAT Modeling of the St. Joseph River Watershed, Michigan and Indian

Prepared for:

Friends of the St. Joseph River P.O. Box 354, Athens, MI 49011

Prepared by:

Kieser & Associates 536 E. Michigan Ave., Suite 300 Kalamazoo, Michigan 49007

April, 2005

1.0 Introduction

The U.S. Environmental Protection Agency issued new requirements for watershed management plans funded through Section 319 grants. These requirements call for additional quantification of sources of pollutants and expected reductions in pollutants with recommended best management practices (BMPs). Because the St. Joseph River watershed is so large (4,685 square miles), GIS-based models are necessary to understand current non-point source loading conditions and to model watershed changes and the associated non-point source loading. To achieve the Nine Elements through supplemental Work Plan efforts, the watershed was modeled with the Soil and Water Assessment Tool (SWAT) in this study. This model uses land cover, elevation and soils data, climatological information, point source loadings and in-stream characteristics (e.g., dams) to identify sediment, nutrient and other pollutant loads from individual subwatersheds to the mouth of the basin. It was also used to assess predicted load reductions for agriculture by applying a suite of BMPs in critical agricultural tributary subwatersheds: namely the Elkhart River, the Pigeon River, and the Fawn River.

SWAT is a river basin, or watershed, scale model developed by Dr. Jeff Arnold for the USDA Agricultural Research Service (ARS). SWAT was developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use and management conditions over long periods of time (Neitsch et al., 2002b) SWAT has been used extensively in the U.S. for TMDL applications. For example, the Ohio EPA employed SWAT for its TMDL development for the Stillwater River watershed, a subwatershed of the Great Miami River. The US EPA has accepted SWAT as a major modeling tool for TMDL development (OH EPA, 2003). SWAT has also been incorporated into US EPA's BASINS (<u>Better Assessment Science Integrating point and Nonpoint Sources</u>) system, developed for watershed and water quality-based assessment and integrated analysis of point and nonpoint sources. BASINS integrates a geographic information system (GIS), national watershed and meteorological data, and state-of-the-art environmental assessment and modeling tools into one convenient package. The SWAT modeling work in this study was conducted within the BASINS system (version 3.0).

2.0 Model Input

SWAT requires an assortment of input data layers for model set-up and watershed simulations. Locally provided data were used in this study whenever possible. Best available GIS data products from US EPA and US Geological Survey (USGS) were downloaded, processed, and incorporated into the BASINS-SWAT system for the modeling study.

2.1 Geophysical Datasets

The 30-meter resolution Digital Elevation Model (DEM) datasets for the counties of the St. Joseph River watershed were obtained from state agencies in Michigan and Indiana. Processed by ArcView[®] GIS 3.2 software package, the datasets were "mosaiced" together to create a seamless file. The resulting grid file was utilized in SWAT modeling to delineate subwatersheds and obtain slope conditions of each subwatershed or for the entire watershed.

The GIS data layer of the stream network of the entire St. Joseph River watershed was obtained from the National Hydrography Dataset (NHD), produced by USGS and available on the web (<u>http://nhd.usgs.gov</u>). The DEM and NHD datasets together were used to delineate 229 subwatersheds^a for the watershed as the basic units of SWAT modeling (Figure 1).

USGS has also compiled landuse data based primarily on the classification of Landsat Thematic Mapper 1992 satellite imagery data in National Land Cover Data Set for the entire contiguous United States. A 21-class land cover classification scheme was used in the data layer. This dataset (http://landcover.usgs.gov/natllandcover.asp) is in a 30-meter resolution raster format.

Data for the area encompassing the St. Joseph watershed were downloaded from the website and processed to be incorporated the BASINS-SWAT interface. Figure 1 shows the 1992 land cover distribution for the St. Joseph River watershed.

Figure 1: The St. Joseph River Watershed

^a These subwatersheds are the basic units on which the subwatersheds used in the Watershed Management Plan (WMP) are based. However, the numbering of subwatersheds in this study is different from that in the WMP.

The BASINS built-in state soil data layer—State Soil Geographic (STATSGO) Database—was used in the modeling. The STATSGO database was developed by USDA-NRCS and incorporated by US EPA into the BASINS system. Landuse classes and soil types were overlaid to define the Hydrologic Response Units (HRUs)^b for each of the 229 subwatersheds for the SWAT model. For the purpose of this study, the dominant landuse class and soil type for each subwatershed were used, resulting in one HRU per subwatershed (see Secton 7.0 for more discussion). Table 1 provides the landuse class for each of the subwatersheds. There were 214 agricultural row crop subwatersheds, 4 deciduous forest, 7 pasture, 2 urban low density residential land subwatersheds and 2 water body dominated subwatersheds.

Weather data (daily precipitation, daily maximum, and minimum temperatures) from 10 stations in and around the St. Joseph River watershed (Berrien Spring/St. Joseph, MI; Dowagiac, MI; Three Rivers, MI; Coldwater, MI; Hillsdale, MI; South Bend, IN; LaGrange, IN; Steuben, IN; Elkhart, IN; and Columbia, IN;) were obtained from National Oceanic and Atmospheric Administration (NOAA)'s National Climatic Data Center for the period from January 1, 1986 to December 31, 2004. As a result, SWAT modeling in this study was also conducted for the same period of time. Specifically, model calibration was run from January 1, 1986 through December 31, 1995 and model validation and scenario simulation were run from January 1, 1996 through December 31, 2004. Monthly datasets were downloaded, assembled, and processed for each station to form SWAT weather input files. Data processing included unit transformation, missing data estimation, and database file building.

Because loading reductions due to changes in agricultural management practices are only relative to the initial loading, accurate calibration was not necessarily critical in deriving loading reduction potentials for a particular subwatershed. This is likely to be true as long as model parameters are reasonably calibrated to reflect local conditions.

2.2 Point Source Loading Data

Annual point source flow and nutrient loading data were obtained from the BASINS built-in PCS (Permit Compliance System) database. This database provides loading data from point sources in 75 subwatersheds. However, not all the point sources reported in the PCS database have all the sediment and nutrient loading information for all the years modeled in this study. Whenever missing, annual loading data for a particular point source and a particular loading parameter were filled with the average values of all available data from previous years. It should be noted here that although data gaps were encountered for many point sources, the PCS database does provide loading information for most of the major point sources. Therefore, the majority of the loadings from point sources were captured in the model. Furthermore, the St. Joseph River watershed is well known for its agricultural nonpoint source dominated sediment and nutrient loadings. Consequently, missing loading data from minor point sources should not induce any significant error in the modeled loadings from the watershed.

^b HRUs are basic modeling units in SWAT. Each HRU has a unique combination of one land use and one soil type.

Table 1: SWAT subwatershed information for the St. Joseph River watershed.

Sub.†	LUİ	Area (ac)	County	Ag. mgt¶	Manure§	Sub.	Landuse	Area (ac)	County	Ag. mgt	Manure
1	AGRR	19,958	Van Buren	CS-m	S	59	AGRR	7,751	Branch	CS	
2	AGRR	18,168	Van Buren	CS-m	F	60	AGRR	15,062	Lagrange	CH	F
3	AGRR	4,892	Van Buren	CS-m	F	61	AGRR	8,021	St. Joe (MI)	CS	
4	AGRR	17,069	Van Buren	CS-m	F	62	AGRR	6,874	Lagrange	CH	F
5	AGRR	9,851	Van Buren	CS-m	F	63	AGRR	10,769	St. Joe (MI)	CS	
6	AGRR	17,772	Van Buren	CS-m	F	64	AGRR	8,359	Lagrange	CH	F
7	AGRR	26,747	Van Buren	CS-m	S	65	AGRR	4,272	Cass	CS-m	S
8	AGRR	21,801	Van Buren	CS-m	F	66	AGRR	22,452	St. Joe (MI)	CS	
9	AGRR	10,433	Van Buren	CS-m	S	67	AGRR	6,974	Lagrange	CH	S
10	FRSD	8,998	Berrien			68	AGRR	12,599	Lagrange	CH	F
11	AGRR	12,006	Van Buren	CS-m	S	69	AGRR	10,908	Steuben	CS	
12	AGRR	18,620	Van Buren	CS-m	F	70	AGRR	10,632	Elkhart	CS	
13	AGRR	24,639	Calhoun	CS		71	AGRR	12,757	Elkhart	CS	
14	AGRR	10,311	Calhoun	CS		72	AGRR	11,967	St. Joe (IN)	CS-m	S
15	URLD	5,987	Berrien			73	AGRR	22,862	St. Joe (IN)	CS-m	S
16	AGRR	13,899	Branch	CH	F	74	AGRR	17,209	Lagrange	CH	S
17	AGRR	15,798	Kalamazoo	CS		75	AGRR	16,213	Lagrange	CH	S
18	AGRR	12,226	Calhoun	CS		76	AGRR	5,576	Elkhart	CS	
19	AGRR	7,246	Branch	CS		77	AGRR	19,759	Elkhart	CS	
20	AGRR	17,482	Kalamazoo	CS		78	AGRR	10,530	Elkhart	CS	
21	AGRR	3,085	Kalamazoo	CS		79	AGRR	3,958	Elkhart	CS	
22	PAST	15,564	Berrien			80	AGRR	7,923	Elkhart	CS	
23	PAST	7,779	Berrien			81	URLD	196	Elkhart		
24	AGRR	32,884	Van Buren	CS-m	S	82	AGRR	4,100	Elkhart	CS	
25	AGRR	14,923	Branch	CH	S	83	WATR	121	Elkhart		
26	AGRR	12,730	Kalamazoo	CS		84	WATR	52	Elkhart		
27	AGRR	14,225	Branch	CS-m	S	85	AGRR	8,909	Elkhart	CS	
28	AGRR	19,305	Branch	CH	F	86	AGRR	3,548	Elkhart	CS	
29	AGRR	11,360	Cass	CS-m	5	8/	AGRR	9,123	Lagrange	CH	S
30	AGRK	25,284	Cass	CS-m	F	88	AGRK	11,086	Lagrange	CH CS m	5
22	ACRR	4 406	Cass	CS-III	3	09	AGKK	12,014	Ellshort	CS-III	3
32	AGRK	4,490	St. Joe (MI)			90	AGRK	6 018	Lagrango		 C
33	AGRE	10.287	St. Joe (MI)			02	AGRE	20.765	Lagrange	СН	2
35	AGRR	4 055	St. Joe (MI)			92	AGRR	12 121	Lagrange	СН	F
36	AGRR	11 162		CS-m	F	9/	AGRR	12,121	Lagrange	СН	F
37	AGRR	9.833	Cass	CS-m	F	95	AGRR	14 469	Flkhart	CS	
38	AGRR	3 844	St Ice (MI)	CS III	-	96	AGRR	4 9/1	Elkhart	CS	
30	AGRR	11 811	Hillsdale	CS		97	AGRR	12 554	St. Ioe (IN)	CS-m	S
40	AGRR	8 313	Hillsdale	CS		98	AGRR	14 569	Flkhart	CS	
41	AGRR	23.578	St. Joe (MI)	CS		99	AGRR	9,416	Lagrange	CH	F
42	AGRR	12.820	Branch	CS		100	AGRR	13.964	Noble	CH	F
43	AGRR	20.904	Branch	CS		101	AGRR	12.411	Elkhart	CS	
44	AGRR	21.481	St. Joe (MI)	CS		102	AGRR	15.681	Noble	CH	F
45	AGRR	12,345	St. Joe (MI)	CS		103	AGRR	9,426	Noble	CH	F
46	AGRR	16,393	St. Joe (MI)	CS		104	AGRR	10,958	Noble	CH	S
47	AGRR	21,284	Cass	CS-m	S	105	AGRR	7,994	Elkhart	CS	
48	FRSD	15,838	St. Joe (MI)			106	AGRR	10,918	Elkhart	CS	
49	AGRR	17,746	St. Joe (MI)	CS		107	AGRR	19,224	Noble	CH	S
50	AGRR	13,110	Cass	CS-m	F	108	AGRR	17,083	Noble	CH	F
51	AGRR	14,992	Berrien	CS		109	AGRR	11,559	Elkhart	CS	
52	AGRR	23,977	Berrien	CS		110	AGRR	9,635	Kosciusko	CS	
53	AGRR	14,195	St. Joe (MI)	CS		111	AGRR	686	Kosciusko	CS	
54	AGRR	15,248	St. Joe (MI)	CS		112	AGRR	12,009	Kosciusko	CS	
55	AGRR	12,114	Cass	CS-m	F	113	AGRR	9,152	Kosciusko	CS	
56	AGRR	8,848	Branch	CS		114	AGRR	13,340	Kosciusko	CS	
57	FRSD	4,812	Berrien			115	AGRR	15,852	Noble	CH	F
58	AGRR	15,157	Cass	CS-m	S	116	AGRR	11,008	Noble	CH	F

Tuble 1. 5 Will subwatershed mornhadon for the St. Joseph River watershed (Continued)	Table 1: SWAT subwaters	shed information	for the St. Jose	ph River watershed	(Continued).
---	-------------------------	------------------	------------------	--------------------	--------------

Sub.	Landuse	Area (ac)	County	Ag. mgt	Manure	Sub.	Landuse	Area (ac)	County	Ag. mgt	Manure
117	AGRR	11,421	Noble	CH	F	176	AGRR	17,556	Steuben	CS	
118	AGRR	15,016	Hillsdale	CS		177	AGRR	8,010	Branch	CS-m	F
119	AGRR	8,950	Hillsdale	CS		178	AGRR	13,485	Hillsdale	CS	
120	AGRR	2,344	Calhoun	CS		179	AGRR	19,896	Hillsdale	CS	
121	AGRR	16,348	Calhoun	CS		180	AGRR	34,602	Branch	CS	
122	PAST	13,483	Berrien			181	AGRR	4,548	Berrien	CS	
123	PAST	15,924	Berrien			182	AGRR	11,311	St. Joe (IN)	CS-m	F
124	PAST	9,963	Berrien			183	AGRR	9,409	St. Joe (IN)	CS-m	S
125	AGRR	13,701	St. Joe (IN)	CS-m	F	184	AGRR	10,609	Elkhart	CS	
126	AGRR	20,938	St. Joe (IN)	CS-m	F	185	AGRR	3,815	Elkhart	CS	
127	AGRR	11,590	Elkhart	CS		186	AGRR	8,664	Elkhart	CS	
128	AGRR	9,611	Noble	CH	S	187	AGRR	16,867	Noble	CH	S
129	AGRR	19,458	Kosciusko	CS		188	AGRR	12,398	Steuben	CS	
130	AGRR	4,136	Noble	CH	F	189	AGRR	13,049	Elkhart	CS	
131	AGRR	5,068	Noble	CH	F	190	AGRR	12,443	Branch	CH	S
132	AGRR	11,759	Noble	CH	S	191	AGRR	9,999	Branch	CS-m	F
133	AGRR	12,621	Noble	CH	F	192	AGRR	12,367	Branch	CH	S
134	AGRR	12,187	Noble	CH	S	193	AGRR	18,682	Branch	CS-m	F
135	AGRR	11,492	De Kalb	CS		194	AGRR	10,532	Branch	CH	F
136	AGRR	10,955	Steuben	CS		195	AGRR	12,642	Branch	CS-m	S
137	AGRR	12,432	Lagrange	CH	S	196	AGRR	3,083	Branch	CS	
138	AGRR	7,961	Steuben	CS		197	AGRR	14,016	Branch	CS-m	S
139	AGRR	14,004	Steuben	CS		198	AGRR	11,351	Branch	CS	
140	AGRR	6,450	Steuben	CS		199	AGRR	17,753	St. Joe (MI)	CS	
141	AGRR	12,837	Steuben	CS		200	AGRR	9,706	Calhoun	CS	
142	AGRR	11,322	Lagrange	CH	F	201	AGRR	12,696	Kalamazoo	CS	
143	AGRR	19,567	Lagrange	CH	S	202	AGRR	8,489	Kalamazoo	CS	
144	AGRR	10,432	Lagrange	CH	F	203	AGRR	7,466	St. Joe (MI)	CS	
145	AGRR	13,281	Van Buren	CS-m	S	204	AGRR	27,607	St. Joe (MI)	CS	
146	AGRR	10,184	Van Buren	CS-m	F	205	AGRR	16,999	St. Joe (MI)	CS	
147	AGRR	23,182	Cass	CS-m	S	206	AGRR	19,589	Cass	CS-m	S
148	AGRR	14,912	Cass	CS-m	F	207	AGRR	14,866	Cass	CS-m	F
149	AGRR	17,497	Cass	CS-m	F	208	AGRR	14,517	Elkhart	CS	
150	AGRR	9,386	Cass	CS-m	5	209	AGRR	20,796	Berrien	CS	
151	AGKK	15,515	Cass	CS-m	F	210	AGKK	10,131	Berrien		
152	AGRR	0,920	Cass	CS-III	Г	211	AGRR	0.807	Berrien		
155	AGRK	23,309	Cass	CS-III	Г	212	AGRK	9,697	Hilladala		
154	ACRR	2 224	St Ica (MI)	CS-III	Г	213	ACRR	12,932	Hillsdala		
155	AGRE	3,224	St. Joe (MI)			214	AGRE	18,003	Kalamazoo		
157	AGRR	7 626	St. Ice (MI)	CS		215	PAST	8 835	Lagrange		
157	AGRR	8,906	St. Joe (MI)	CS		210	AGRR	10 253	Steuben	CS	
150	AGRR	5 782	St. Joe (MI)	CS		217	AGRR	15 304	Steuben	CS	
159	AGRR	11 550	Kalamazoo	CS		210	AGRR	8 298	St. Ioe (IN)	CS-m	5
161	AGRR	19 353	Kalamazoo	CS		220	AGRR	15 991	Flkhart	CS	5
162	AGRR	20.075	Kalamazoo	CS		220	AGRR	13,718	Elkhart	CS	
163	AGRR	17 967	Kalamazoo	CS		221	AGRR	11 543	Elkhart	CS	
164	AGRR	16.602	Calhoun	CS		223	AGRR	15,408	Noble	CH	S
165	AGRR	14.217	Branch	CS		224	AGRR	10.619	Steuben	CS	
166	AGRR	28.073	Branch	CS		225	AGRR	13,910	Lagrange	CH	S
167	AGRR	3,238	Branch	CS		226	FRSD	18,618	Van Buren		
168	AGRR	15,868	Calhoun	CS		227	PAST	24,022	Berrien		
169	AGRR	10,393	Calhoun	CS		228	AGRR	8,674	Cass	CS-m	S
170	AGRR	8,169	Hillsdale	CS		229	AGRR	12,559	St. Joe (MI)	CS	
171	AGRR	12,179	St. Joe (MI)	CS		† Subw	atershed n	umber (see F	igure 1).		
172	AGRR	4,733	St. Joe (MI)	CS		‡ Land	use types:	AGRR: (Agri	cultural) Row C	Crop; FRSD:	Deciduous
173	AGRR	19,225	St. Joe (MI)	CS		Forest;	URLD: (U	Irban) Low D	ensity Residenti	al; PAST: P	asture.
174	AGRR	17,925	Branch	CS		¶ Agric	cultural ma	nagement typ	es: CH: corn sil	age (5 yr)-h	ay (5 yr)
175	AGRR	7.435	Steuben	CS		with m	anure; CS:	corn-soybean	n; CS-m: corn-s	oybean with	manure;
1.15		.,	Steabell	25		8 Mani	ire applica	tion season; H	": Tall, S: spring.		

2.3 Dams and Ponds

A dam dataset was part of the BASINS built-in database and was used in the SWAT modeling with some modification. Locations of dams in the watershed were identified to the subwatersheds delineated in this study. Depending on the location of the subwatersheds and the streams on which the dams were located, impoundments were modeled as either dams (defined in SWAT as impoundments located on the main stream of a subwatershed), or ponds (impoundments located elsewhere in a subwatershed) in the model. As a result, impoundments were modeled in 29 subwatersheds as dams and in 4 subwatersheds as ponds.

2.4 Agricultural Land Management Information

Agricultural land management practices are key inputs for SWAT simulations. A detailed, realistic set of management scenarios was developed for SWAT by consulting county and state USDA-NRCS officials for each agricultural subwatersheds (Table 1). The key information in these management scenarios included crop rotations, timing and types of tillage, fertilizer and atrazine applications, and fertilizer and atrazine application rates. For the purpose of this study, three major types of agricultural land management scenarios were constructed: 1) 5-year corn silage followed by 5-yr hay with dairy manure being applied during the corn silage years; 2) corn-soybean rotation; and 3) corn-soybean rotation with swine manure being applied for corn.

To realistically simulate the current flow and nutrient loadings from the watershed, it is important to know the distribution of land management scenarios for the 214 agricultural row crop subwatersheds. Subwatershed-specific agricultural management data were not available for the St. Joseph River watershed. Instead, county-level estimates were provided by the USDA-NRCS officials. To segregate county-level information into the subwatershed level, a subwatershed was assigned to a county based on where the majority of its area is located (Figure 1 and Table 1).

For agricultural land with manure applications, it is difficult to determine the timing of the application. An algorithm based on randomly assigned numbers was used. Specifically, a computer generated random number was assigned to each manure-application subwatershed and the first digit after the decimal point was separated from the number. If this particular digit was an even number, the corresponding subwatershed was assigned to have spring manure application. Otherwise, fall manure application was assigned (Table 1).

Three sets of management scenario files were developed for the model. These three sets of files were different in fertilizer (including manure) and atrazine application rates, fertilizer types, and tillage practices. These differences reflect the changing of farming practices in the past two decades in the watershed. For the model, the first set was applied to simulations run from 1986 through 1995 and the second to simulations run from 1996 through 2004. The third set was used to simulate agricultural BMPs.

3.0 Model Calibration

Calibration procedures were formed following the advice provided in some key publications by the principal SWAT model developer, Dr. Jeff Arnold, and his colleagues at the USDA ARS-Blackland (Texas) Research Center (Arnold et al, 2000; Santhi et al, 2002; and Neitsch et al, 2002b). Table 2 provides a list of the model parameters whose values were calibrated in this study against observed data. Model calibration was focused on the simulated loads of the St. Joseph River near Niles, MI, where flow data from a USGS gage station (USGS station No. 04101500) are readily available for the simulation time period. The drainage area covered by the St. Joseph River at this gage station is 78% of the total watershed area.

Parameter	Model	Description	Model Range	Actual Value/
Name	Processes			Change used
CN2	Flow	Curve number	±10%	-8
ESCO	Flow	Soil evaporation compensation factor	0.00 to 1.00	0.5
SOL_AWC	Flow	Soil available water capacity	±0.04	+0.03
SMFMN	Flow	Minimum melt rate for snow during the year	0.00 to 10	1.00
BLAI	Flow	Maximum potential leaf area index	0.5 to 10	Corn - 5.0 Corn silage - 6.0
USLE_C	Sediment	Universal Soil Loss Equation C factor	0.0001 to 1	Soybean: 0.150 Corn-C ² : 0.065 Soybean-C: 0.030 Corn Silage-C: 0.150
USLE_P	Sediment	Universal Soil Loss Equation P factor	0.1 to 1.0	0.65
SLSUBBSN	Sediment	Average slope length (m)	NA	-10%
SLOPE	Sediment	Average slope steepness (m/m)	NA	-10%
BIOMIX	Sediment/ Nutrients	Biological mixing efficiency	0 to 1.0	0.40
SPCON	Sediment	Linear factor for channel sediment routing	0.0001 to 0.01	0.001
SPEXP	Sediment	Exponential factor for channel sediment routing	1.0 to 1.5	1.0 (default)
PPERCO	Mineral P	Phosphorus percolation coefficient	10.0 to 17.5	10 (default)
PHOSKD	Mineral P	Phosphorus soil partitioning coefficient	100 to 200	200 (default 175)
FRY_LY1	Nutrients	Fraction of fertilizer applied to top 10mm of soil	0.000 to 1.000	0.15
SOL_ORGP	Organic P	Initial organic P concentration in the upper soil layer	NA	0.1 mg/kg
SOL_LABP	Mineral P	Initial mineral (labile) P concentration in the upper soil layer	NA	0.1 mg/kg
SOL_ORGN	Organic N	Initial organic N concentration in the upper soil layer	NA	2,000 mg/kg
RS2	Mineral P	Benthos (sediment) source rate for soluble P at 20 °C	0.001 to 0.1	0.001
RS5	Total P	Settling rate for organic P at 20 °C	0.001 to 0.1	0.1
BC4	Total P	Rate constant for organic P mineralization at 20 °C	0.01 to 0.70	0.01
RHOQ	Total P	Local algal respiration rate at 20 °C	0.05 to 0.5	0.05
CHPST_KOC	Pesticide	Pesticide partition coefficient	0 to 0.100	0.000 (default)

Table 2: Input parameters calibrated in SWAT modeling.¹

CHPST_REA	Pesticide	Rate constant for degradation or removal of pesticide in the water	0 to 0.100	0.010
CHPST_VOL	Pesticide	Volatilization mass-transfer coefficient	0 to 10	0.12
CHPST_STL	Pesticide	Pesticide settling velocity	0 to 10	5.000
SEDPST_REA	Pesticide	Rate constant for degradation or removal of pesticide in the sediment	0 to 0.1	0.100
PERCOP	Pesticide	Pesticide percolation coefficient	0 to 1.00	0.50 (default)
BLAI	Flow/Sediment	Maximum potential leaf area index	0.5 to 10	Corn: 5.0 Corn Silage: 6.0
HEAT UNITS	Crop growth	Heat units	NA	Soybean: 1,300 Corn/Corn Silage:1,500 Alfalfa: 1,250

¹ See Santhi et al. (2001) and Arnold et al. (2000) for discussions and more information.

² "C" stands for conservation tillage (no till in this study)

Although the model simulations were conducted from 1986 through 1995, model calibration was performed for the period of 1991-1995, allowing the first five years of the simulations to be the model setup period (Neitsch et al, 2002b). Flow calibration was based on data from the USGS gage station near Niles. Cursory sediment and nutrient calibrations were also attempted in this study based on limited USGS monitoring data at the same station. However, because monitoring frequency for nutrients and sediment at this station was only once every two months (or less), accurate monthly loading calibration was not possible. Monitoring data were used only to verify the general range and magnitude of sediment and nutrient load values simulated by the model.

Statistical estimates of the long-term (1975-1990) average loads of TP and TSS from the watershed by Robertson (1997) were used as the primary calibration points for these two parameters. The Lake Michigan Mass Balance Study (<u>http://www.epa.gov/glnpo/lmmb</u>; US EPA) estimated loadings of total nitrogen (TN) and atrazine from the St. Joseph River for 1994 and 1995. However, it is not clear from the information available on the Study's website how the loadings were calculated. It is likely that some modeling was involved because the atrazine report of the Study (<u>http://www.epa.gov/glnpo/lmmb/results/atra_final.pdf</u>) indicates that only 11 samples were taken at the mouth of the river from April to October of 1995. In addition, no significant correlation between river flow and atrazine concentration was found for the St. Joseph River. For TN load, information on how the values were derived was not available on the website. Despite these uncertainties, to our knowledge, the Lake Michigan Mass Balance Study provides the only known estimates of loadings of TN and atrazine for the St. Joseph River to date. Therefore, these estimates were used in this study for cursory calibration for TN and atrazine for the SWAT model.

4.0 Calibration Results

As noted above, rigorous calibration of the model was not practical due to inadequate monitoring data and the limited scope of this study. The following are flow calibration conducted at the outlet of subwatershed # 181 that coincides with the USGS gage station near Niles, MI (Figure 1), and cursory calibrations for TP, TSS, TN, and atrazine. The calibrations for these pollutants are presented in tables only.

4.1 Flow

SWAT model prediction of monthly flows from January 1991 to December 1995 in comparison to the USGS data is shown in Figure 2 for the Niles station on the St. Joseph River main stem. Statistics for the simulation are also presented in the figure as a table.

	Average flow rate * (m^3/s)	\mathbb{R}^2	RMSE (m ³ /s)	Nash-Sutcliffe Efficiency**
This study	111	0.83	28	0.64
Description	USGS value: 116	Best value 1.0	Smaller is better	Best value 1.0

* Average monthly flow rate for the comparison period: Jan. 1991 through Dec. 1995.

** Values ≥ 0.50 are generally accepted as adequate (Santhi et al. [2001])

4.2 Nutrients and Atrazine

It should be noted that model calibration and Robertson's estimates (Robertson, 1997) have different time spans and are not directly comparable. Robertson's study used a flow-concentration correlation to estimate loads. As Richards (1998) pointed out, such a method tends to underestimates loads due to frequent concentration data gaps at high flows. Therefore, the comparisons of TP and sediment between model results and Robertson's estimates were intended only to be a rough model adjustment process, not a rigorous calibration.

	TP (kg/yr)	Sediment (metric tons/yr)			TN (kg/yr)	Atrazine (kg/yr)
This study	371,737	96,857	This	1994	6,592,000	232
(1991-1995)			study	1995	12,535,000	5,465
Robertson	275,352	96,848	LMMB*	1994	~ 6,700,000	~ 310
(1975-1990)				1995	~ 7,400,000	~ 470

Table 3: Cursory model calibration results near Niles, MI and some reference estimates from outside sources.

* Lake Michigan Mass Balance Study result charts (<u>http://www.epa.gov/glnpo/lmmb</u>)

Total nitrogen and atrazine calibrations were hampered by uncertainties regarding the results from the Lake Michigan Mass Balance Study and the short term nature of the LMMB study. Table 3 indicates that the 1994 results from the model match the LMMB numbers fairly well but the 1995 results overestimated TN and atrazine substantially compared to LMMB numbers. This is probably due to the high precipitation recorded in the watershed in April and May of 1995, especially between May 8 and May 31 of 1995 after the atrazine application date (May 8 every year) used in the model. For example, at the Three River climatic station in 1994, there were 118 mm of rain in April and May and 24 mm between May 8 and May 31. In 1995, these two numbers were 192mm and 82 mm, respectively. While farmers can adjust pesticide and fertilizer application dates according to the weather condition, the way SWAT model was set up in this study did not allow such adjustment, resulting in high loadings of atrazine and TN in 1995.

Overall, model calibration yielded results that agreed generally with estimates based on monitoring data (Table 3). Rigorous calibration was not possible considering data availability and the scope of this study.

5.0 Model Validation

Due to the lack of any load estimates from outside sources for the St. Joseph River watershed after 1995, model validation was conducted only for flow at USGS gage stations where continuous flow data are available on the USGS website up to September 2003. The station near Niles, MI was chosen because it was the same station that the model calibration was conducted. Two other stations were also chosen for the validation because the drainage areas they represent were of interest to the watershed management planning—the station at Goshen, Indiana, draining most of the Elkhart River watershed and the station near Scott, Indiana, draining most of the Pigeon River watershed. Flow validation was done at these three sites for the last five full calendar years (1998 – 2002) of available USGS gage station data. Tables 4 through 6 show the validation results.

Tabl	e 4.	Flow validation re	esults for U	SGS gage statio	n near Niles	, MI (US	SGS Station No.	04101500) from
Janu	ary	1998 through Dec	ember 200	2.				

	Average flow rate * (m^3/s)	R^2	RMSE (m ³ /s)	Nash-Sutcliffe Efficiency**			
This study	112	0.85	37	0.50			
Description	USGS value: 104	Best value 1.0	Smaller is better	Best value 1.0			
* Average monthly flow note for the composition period. Len. 1000 through Dec. 2002							

* Average monthly flow rate for the comparison period: Jan. 1998 through Dec. 2002.

** Values ≥ 0.50 are generally accepted as adequate (Santhi et al. [2001])

	Average flow rate * (m^3/s)	R^2	RMSE (m ³ /s)	Nash-Sutcliffe Efficiency**
This study	17.2	0.73	7.7	0.56
Description	USGS value: 16.0	Best value 1.0	Smaller is better	Best value 1.0

Table 5. Flow validation results for USGS gage station at Goshen, IN (USGS Station No. 04100500) fromJanuary 1998 through December 2002.

* Average monthly flow rate for the comparison period: Jan. 1998 through Dec. 2002. ** Values ≥ 0.50 are generally accepted as adequate (Santhi et al. [2001])

Table 6. Flow validation results for USGS gage station near Scott, IN (USGS Station No. 04099750) fromJanuary 1998 through December 2002.

	Average flow rate * (m^3/s)	R^2	RMSE (m ³ /s)	Nash-Sutcliffe Efficiency**
This study	9.5	0.61	4.3	0.50
Description	USGS value: 9.8	Best value 1.0	Smaller is better	Best value 1.0

* Average monthly flow rate for the comparison period: Jan. 1998 through Dec. 2002.

** Values ≥ 0.50 are generally accepted as adequate (Santhi et al. [2001])

Validation results show that our model with calibrated parameters generated flow predictions at three different sites that match their flow gage station recordings with acceptable statistics.

6.0 Baseline Simulation Results

Figures 3-5 show the range of the annual loads of TP, sediment, and TN, respectively, for each subwatershed in the St Joseph River watershed. These loading values were the average annual values from 2000 through 2004 as simulated by the SWAT model. They were used as the baseline loading conditions to which the simulated loads from BMP implementation were compared in Sections 6.2-6.4 of this report. The Appendix to this report tabulates the per acre loads for each subwatershed.

Comparing to the results (<u>http://www.stjoeriver.net/wmp/tasks/nps_load_model.htm</u>) from the empirical nonpoint source loading modeling conducted earlier for the initial development of the St. Joseph River watershed management plan, TP and sediment loading values from SWAT and the empirical model are similar in that the general trend is an increase in loadings from the east part of watershed to the west part. This likely reflects the same increasing trend of the amount of precipitation these parts of the watershed receive annually. The two models also both show high loadings for the same parts of the watershed, for example, subwatersheds in Elkhart and Kosciusko Counties in Indiana, where high agricultural land use occurs.

The advantages of the empirical nonpoint source loading model lie on its straightforward landuse-based load computations (<u>http://www.stjoeriver.net/wmp/docs/nps_model_report.PDF</u>). As a result, the empirical model represents landuse distributions truthfully. This character makes this easy-to-use model very useful in comparing pollutant loads from watersheds with different landuse distributions, especially in watersheds where small proportions of non-dominant landuse types exist (e.g., urban lands and forests in agricultural dominated watersheds). However, by not including in the loading equations important parameters such as soil types, slopes, and land management practices (e.g., crop rotations), and watershed processes such as the movement of pollutants on the land or in the runoff (e.g., sediment deposition), the empirical model cannot account for loading changes resulting from the variation of these parameters and watershed

Ibwatershed Total Phosphorus Loading of the St. Joseph River Wate

processes. Consequently, the empirical model has only a very limited applicability in estimating BMP effectiveness where it is necessary to change these parameters and simulate these processes.

SWAT, as a physically based model, specifically uses these parameters and simulates important watershed processes. It can truthfully represent agricultural cropping systems, simulates the hydrological cycle and the fate and transport of sediment, nutrients, and agricultural chemicals as they move across the watershed in various media, using daily climatic information and taking into account watershed characteristics. As such, SWAT is well suited for applications for load estimates involving watersheds with variable soil and landscape conditions and changing land management practices (e.g., agricultural BMPs). On the other hand, because SWAT simulates the various watershed processes, there is a high demand for data, expertise, and other resources for a satisfactory SWAT modeling study. In addition, the current version of SWAT in the BASINS interface requires a very high number of HRUs to truly represent the landuse distribution of a watershed that is the size of the St. Joseph River and has highly dispersed

Figure 4

Subwatershed Sediment Loading of of the St. Joseph River Watershed

locations of different landuses (see Section 7.0). As a result, some important landuses, such as urban lands and forests, that occupy small areas in some subwatersheds were omitted in this study.

With these differences established between SWAT and the empirical nonpoint source model, we can interpret the discrepancies of the baseline loading estimates from the SWAT (Figures 3-5) and the empirical model (<u>http://www.stjoeriver.net/wmp/tasks/nps_load_model.htm</u>). The most obvious difference is the magnitude of loading values from each subwatershed. Because the empirical model was calibrated against loading values derived from monitoring data at Niles, MI (<u>http://www.stjoeriver.net/wmp/docs/nps_model_report.PDF</u>), which is located on the lower reach of the St. Joseph River, and because the model does not consider the fate and transport of pollutants, it essentially assumes that one pound of, for example, phosphorus load generated in subwatersheds near the headwaters of the St. Joseph River has the same chance to reach Niles as one pound of phosphorus generated in a subwatershed only one mile upstream of Niles. As such, the calibration process was forced to adjust parameters to give low pollutant loading values for all subwatersheds in order to compensate for load losses occurring during the transport of pollutants generated from remote parts of the watershed. Consequently, loading values are low compared to SWAT values, which are the loads from each subwatershed before transport losses

Subwatershed Total Nitrogen Loading of of the St. Joseph River Waters

occur. It is therefore, fair to say that the SWAT model generated loading values for each subwatersheds that are more realistic than the empirical model. However, again, it should be pointed out here that the value of the empirical model resides more on how the loads estimated for the subwatersheds compare to each other than the absolute values of these estimates.

In terms of relative values, there are also some differences between the two models. For example, compared to other subwatersheds, Figures 3-5 show high TP, sediment, and TN loadings for the subwatersheds in Cass County, MI (e.g., subwatershed # 30, 151, and 152), while the empirical model generally gave low to moderate loadings. Cass County has a high concentration of swine manure application on its farm land (personal communications with USDA-NRCS personnel) and the average slope for the land in these subwatersheds is around 3-4%, much higher than the watershed average of 2% (from SWAT model parameter calculations performed by the BASINS interface). Combined, these two factors produced high pollutant loads in the SWAT model for these subwatersheds. On the other hand, in this study, the SWAT model assumed most of these subwatersheds were composed of only agricultural land based on the fact that agricultural row cropping occupies the majority (over 50%) of the land in these subwatersheds. The empirical model, however, considered all the landuse types including about 20% of forest but not the land management and slope factors. As a result, the empirical model

produced lower loadings. One can conclude from this comparison that although SWAT may have over-estimated loads from these subwatersheds due to the omission of forest lands, it can be decided with confidence that the agricultural land in these subwatersheds in Cass County, MI is a source of high TP, sediment, and TN loadings.

Another example is those subwatersheds with substantial urban lands (e.g., subwatershed # 61, 72, 210). The empirical model, on a relative term, generally produced highest load estimates of TP and sediment for these subwatersheds, but SWAT did not, apparently due to the omission of urban lands in SWAT. In such cases, one should give more consideration to the empirical model results when undertaking watershed management planning for these subwatersheds.

6.1 BMP Simulation Results

Tributary watersheds that are largely agricultural and have the highest watershed restoration scores (<u>http://www.stjoeriver.net/wmp/tasks/task4/subshed_scoring.htm</u>) based on planning project efforts were examined using SWAT to assess phosphorus, nitrogen, sediment and atrazine loading, and BMP effectiveness. Representing more than one-third of the entire St. Joseph River watershed, the following agricultural tributary watersheds were examined here (Figure 6):

- The Elkhart River (and all tributaries 37 subwatersheds)
- The Pigeon River (and all tributaries 20 subwatersheds)
- The Fawn River (all stretches 11 subwatersheds)

This study examined the load and concentration reductions resulting from a combination of agricultural BMPs and hypothetical BMP implementation rates (% of land implemented with the BMP). Results were interpreted as the load or concentration reductions expressed at the mouth of each tributary watersheds. It is important to note here that load and concentration reductions were expressed at the mouth of each tributary watershed because due to in-stream settling, resuspension, and/or algal uptake/release, load reduction achieved at subwatershed level can be diminished at downstream observation points. Table 7 shows the simulated BMP implementation scenarios.

As Table 7 indicates, there are 15 BMP scenarios (types of BMPs times number of implementation rates) examined in this study. Which subwatersheds will be implemented with BMPs was decided randomly for each tributary watershed using computer generated random numbers. The random assignment process was repeated until the selected subwatersheds totaled approximately the desired land area percentage (25, 50, or 75%) of the tributary watershed.

Conservation tillage of corn or corn silage rotation was simulated in SWAT with reduced C factors in the Modified Universal Soil Loss Equation (MUSLE; see Table 2) and the removal of tillage practices in the agricultural management input files. Nutrient management (fertilizer application rate reduction) was simulated with a 25% reduction of fertilizer and manure application rates. Installation of filter strips was simulated by adding a 5 meter edge-of-field filter strips in selected subwatersheds (HRUs). Contour farming was simulated with a reduced (by 0.3 units) of the P factor in the MUSLE (see Table 2).

Figure 6. The Three Major Agricultural Tributary Watersheds

¹ BMP application rates as a percentage of the total agricultural land in the watershed. It's assumed that these BMPs are not currently implemented in the watershed.

Х

Х

Х

² No-till for corn or corn silage; most of the farmers in the watershed currently do no-till for soybean.

³ Fertilization application rate reduction of 25% over the current application rates (including manure application).

⁴ Edge-of-field filter strips (15 ft [5 meters] wide, 5% of the total land area).

Combination of the three most Efficient BMPs above

6.2 Load Reductions

At the mouth of each of the three tributary watersheds, the 5-year average (2000 through 2004) annual loads of TP, sediment, TN, and atrazine obtained from the current condition simulation were used as the baseline. The same 5-year average annual loads of these pollutants were also obtained for the 15 BMP scenarios. The difference between each BMP scenario and the current baseline condition was then used to indicate the load reduction achieved by this BMP scenario.

	Implementation rate (% of total land)				
	25%	50%	75%		
Total P					
Fert ^a	10.8	14.0	20.8		
No-till ^b	17.9	21.1	24.9		
Filter ^c	24.9	31.9	47.0		
Contour ^d	16.0	20.2	28.5		
Combo ^e	35.2	44.8	64.1		
Sediment					
Fert	0.0	0.0	0.0		
No-till	5.6	23.0	39.5		
Filter	6.9	22.0	39.6		
Contour	8.3	19.6	33.5		
Combo	10.3	34.1	61.4		
Total N					
Fert	0.9	2.0	2.4		
No-till	14.6	25.4	46.5		
Filter	14.6	20.1	39.4		
Contour	9.5	13.1	25.0		
Combo	23.3	36.3	67.1		
Atrazine					
Fert	0	0	0		
No-till	7.1	18.8	31.7		
Filter	13.7	22.9	37.6		
Contour	0.0	0.0	0.0		
Combo	16.7	30.7	50.7		

Table 8. Load reduction (%) as manifested at
the mouth of the Fawn River

^a Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter strips, and contour farming

	Imp	lementation	rate
	(% of total land)		
	25%	50%	75%
Total P			
Fert ^a	6.1	13.2	19.9
No-till ^b	3.7	12.3	19.0
Filter ^c	12.0	28.4	42.6
Contour ^d	14.8	23.6	31.5
Combo ^e	15.9	38.7	58.3
Sediment			
Fert	0.0	0.0	0.0
No-till	0.0	0.0	4.4
Filter	16.8	28.3	47.5
Contour	9.6	19.7	34.3
Combo	24.8	34.1	61.4
Total N			
Fert	0.0	0.0	0.5
No-till	4.0	16.8	28.7
Filter	9.8	26.1	38.8
Contour	9.9	19.3	26.8
Combo	13.7	37.7	57.8
Atrazine			
Fert	0.0	0.0	0.0
No-till	8.1	24.5	27.8
Filter	10.2	30.2	44.6
Contour	0.0	0.0	0.0
Combo	13.5	40.1	56.0

Table 9. Load reduction (%) as manifested at the mouth of the Pigeon River

^a Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter strips, and contour farming

Results in Table 8 show that for the Fawn River watershed, the no-till and the edge-of-field filter strips BMPs have the highest load reductions, especially at the 50% application rate. No-till is particularly effective for sediment and TN. In addition, no-till also shows a higher increase than filter trips in effectiveness for sediment, TN, and atrazine when the application rate goes from 25% to 50%. This can have a significant cost implication considering it is more expensive to install filter strips than implementing no-till (see Section 6.2).

Numbers in Table 9 suggest that for the Pigeon River watershed, filter strips are the most effective BMP in most cases and become even more so as the implementation rate increases.

	Implementation rate (% of total land)		
	25%	50%	75%
Total P			
Fert ^a	4.9	10.5	16.1
No-till ^b	2.4	7.7	9.9
Filter ^c	11.2	23.5	37.0
Contour ^d	6.7	14.3	22.1
Combo ^e	14.5	31.3	48.4
Sediment			
Fert	0.0	0.0	0.0
No-till	13.3	27.1	58.3
Filter	12.0	24.3	52.4
Contour	10.5	19.9	41.2
Combo	19.1	34.1	61.4
Total N			
Fert	0.0	0.0	0.0
No-till	7.7	16.5	28.2
Filter	12.1	23.3	36.1
Contour	6.0	13.5	21.6
Combo	17.3	34.0	53.4
Atrazine			
Fert	0.0	0.0	0.0
No-till	8.6	22.7	39.4
Filter	11.6	25.6	46.9
Contour	0.0	0.0	0.0
Combo	15.1	34.1	63.0

Table 10. Load reduction (%) as manifested at the mouth of the Elkhart River

^a Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter strips, and contour farming

This is different from the Fawn River, where no-till is relatively more effective in reducing loads. These two watersheds are substantially different in their soil hydrologic properties. The Pigeon River flows through predominately heavy clay loam soils (Wesley and Duffy, 1999) and has 67% (area) of its soils being hydrologic group B (56%) or C (11%) soils. The Fawn River watershed, on the other hand, has 64% of hydrologic group A soils that drains better and produces much less runoff. Because filter strips work to filter pollutants out of surface runoff, it can be expected that they are more effective when runoff is higher.

In addition to different soils, the two watersheds also have different crops. The Fawn River is cornsoybean dominant (81%) while the Pigeon has a significant presence of corn silage-hay (52%). The results in Tables 8 and 9 are likely an indication of the higher load reduction efficiency of edge-of-field filter strips in a corn silage-hay rotation than cornsoybean. It is thus clear from this modeling study that in order to achieve the best load reductions, it is important to consider local soil and cropping conditions when BMPs are chosen.

Examining Table 10 reveals that edge-of-field filter strips are most effective in load reductions, except for sediment where it comes to a close second to no-till. Similar to the Pigeon River watershed, the Elkhart River has soils dominated by hydrologic groups B (80%) and C (20%) and crop rotations marked by a significant presence of corn silage-hay (51%). Therefore, it is not surprise that filter strips are the best performing BMP in the watershed.

When individual pollutants are examined, edge-of-field filter strips are always most effective in reducing total phosphorus loading. Contour farming is second. In the Fawn River watershed, where soils are more permeable and the corn-soybean rotation dominates, no-till for corn is as effective as contour farming, particularly when the implementation is at or below 50%. For sediment, no-till performs as well as or even better than filter strips in the Fawn River and Elkhart River watersheds, but is nearly not effective at all in the Pigeon. Total nitrogen reduction is achieved best by filter strips while no-till and contour farming have a comparable effectiveness in all three watersheds.

In general, Tables 8-10 suggest that no-till and edge-of-field filter strips almost always provide the highest load reductions compared to fertilizer reduction and contour farming. The "combo" option (combination of no-till, edge-of-field filter strips, and contour farming), as expected, gives the highest overall load reductions in all cases. However, the combination of three BMPs do not yield reductions that are the summation of these three BMPs. They are smaller than the summation, indicating the diminishing return of adding multiple BMPs on the same land. In addition, when cost is considered (see Section 6.3), the applicability of multiple BMPs may be further discounted.

6.3 Cost of BMPs

Absent a detailed survey, watershed specific costs of conducting various agricultural management practices in the St. Joseph River watershed were difficult to determine. It was therefore decided that for purposes of this study, literature values would be used. Direct payments to farmers to induce no-till vary widely among different localities and individual farmers. Many farmers in the upper Midwest have adopted no-till or other forms of onservation tillage even without any incentive payment. In addition, farm-level economic cost-benefit analyses often indicate a net profit with the adoption of conservation tillage or no-till (e.g., Haper, 1996; Massey, 1997; and Forster, 2002). A recent study on the cost of nutrient and sediment reduction in the Chesapeake Bay watershed (U.S. EPA, 2003a) cited a net farm cost of \$2.72/acre/year for applying conservation tillage. Kurkalova et al. (2003) used a modeling approach based on the contingent valuations literature that computed directly the subsidies needed for adoption of conservation tillage in Iowa. They incorporated an adoption premium related to uncertainty in addition to changes in expected profit because the adoption premium may exceed the profit gain. Consequently, the farmer would require a subsidy to adopt the practice. They concluded that it would need an annual subsidy of \$2.85 per acre for a cornsoybean rotation (1992 dollars).

Among the literature reviewed for this study, the Kurkalova et al. (2003) estimate represented the most rigorous evaluation of subsidies for inducing conservation tillage (including no-till) in the upper Midwest. Therefore, the average of the annual subsidies for corn and soybean from their study was used for this analysis. Applying a Producer Price Index increase of 8.1% from 1992 to 2003, this number was translated into \$3.08 per acre in 2003 dollars.

Costs for implementing nutrient management on cropland correspond to equipment and labor for soil testing, hiring a consultant to design the plan, and the costs of any additional passes over the field to fertilize. Assuming a 3-year useful life for a plan once it is developed, and including the costs of soil testing, implementation, (and in some cases, cost savings and yield increases), net cost estimates range from -\$30/acre/yr (i.e., a net cost savings) to \$14/acre/yr in 2001 dollars (U.S. EPA, 2003a). In this study, a cost of \$2.64/acre/yr in 2003 dollars was used as cited by U.S. EPA in its National Management Measures for the Control of Non-point Pollution from Agriculture (U.S. EPA, 2003b).

Costs for installing edge-of-field grass filter strips consist of a one-time establishment expense and an annual rental for the land used for filter strips. Devlin et al. (2003) suggested an establishment cost of \$100 per acre. Rental cost for the land in the St. Joseph River watershed was obtained from a survey conducted by Schwab and Wittenberg (2004) for Michigan agricultural lands. For the watershed, the average rent of \$93.50 per acre per year for tiled, non-tiled, and irrigated lands in the two survey districts that include counties in the watershed was used. Contour farming cost was obtained from Devlin et al.(2003) directly at \$6.80 per acre.

Following the convention of cost-benefit analysis, net present worth values were calculated for these agricultural management practices based on the acreage of practice adoption, a 15-year BMP implementation time (assuming farmers committed to the BMPs for the same time period as Conservation Reserve Enhancement Programs [CREP] in Michigan and Indiana), and a five percent interest rate. Cost-effectiveness of these practices on a per pound basis were then calculated by dividing the net present worth by the total load reduction achieved over the 15-year period.

Table 11. Total cost (\$K) for BMP implementation in the Fawn River watershed.

	Implementation rate (% of total land)		
	25%	50%	75%
Fert ^a	76	150	229
No-till ^b	89	175	267
Filter ^c	342	675	1,033
Contour ^d	196	386	590
Combo ^e	626	1,236	1,890

^a Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter strips, and contour farming

Table 13. Total cost (\$K) for BMP implementa-
tion in the Fawn River watershed.

	Implementation rate (% of total land)		
	25%	50%	75%
Fert ^a	204	400	601
No-till ^b	238	466	700
Filter ^c	918	1,802	2,704
Contour ^d	524	1,030	1,545
Combo ^e	1,680	3,298	4,949

^a Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter strips, and contour farming

Table 12. Total cost (\$K) for BMP implementation in the Pigeon River watershed.

	Implementation rate (% of total land)		
	25%	50%	75%
Fert ^a	114	227	345
No-till ^b	133	264	401
Filter ^c	514	1,019	1,550
Contour ^d	294	583	886
Combo ^e	940	1,866	2,838

^a Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter strips, and contour farming

Tables 11-13 shows the total cost for implementing each BMP in each of the three watersheds. In addition to the per acre costs of BMPs, these total costs are mainly a function of the size of the watershed. Tables 14-16 clearly shows the costeffectiveness of no-till for corn in all three tributary watersheds and for all pollutants considered in the model. The exceptions are for TP in the Pigeon (Table 15) and Elkhart (Table 16) Rivers watersheds and sediment in the Pigeon River (Table 15) watershed. In these two watersheds, as explained in the last section, the soil conditions and the significant presence of hay growing land render no-till less effective in reducing loadings. Considering cost evidently makes edge-of-field filter strips a less attractive BMP than otherwise

	Implementation rate (% of total land)		
	25%	50%	75%
Total P (\$/lb)			
Fert ^a	13.68	20.84	21.40
No-till ^b	9.59	16.06	20.86
Filter ^c	26.69	41.03	42.60
Contour ^d	23.64	37.04	40.21
Combo ^e	34.49	53.57	57.17
Sediment (\$/ton)			
Fert	NA	NA	NA
No-till	39.12	18.93	16.85
Filter	124.38	76.36	64.90
Contour	58.50	49.05	43.93
Combo	151.64	90.26	76.71
Total N (\$/lb)			
Fert	4.64	4.28	5.52
No-till	0.35	0.40	0.33
Filter	1.35	1.93	1.51
Contour	1.19	1.70	1.36
Combo	1.55	1.96	1.62
Atrazine (\$/lb)			
Fert	NA	NA	NA
No-till	559	417	379
Filter	1,120	1,324	1,235
Contour	NA	NA	NA
Combo	1,688	1,809	1,677

Table 14. Cost of load reduction (\$/lb) as manifested at the mouth of the Fawn River

Combo1,6881,8091,6a Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter

strips, and contour farming

	Implementation rate			
	(% of total land)			
	25%	50%	75%	
Total P (\$/lb)				
Fert ^a	29.85	27.34	27.60	
No-till ^b	57.10	34.20	33.77	
Filter ^c	68.24	57.28	58.03	
Contour ^d	31.69	39.41	44.87	
Combo ^e	94.34	76.96	77.68	
Sediment (\$/ton)				
Fert	NA	NA	NA	
No-till	NA	NA	204.87	
Filter	68.64	80.83	73.31	
Contour	68.93	66.22	57.97	
Combo	85.12	100.86	89.18	
Total N (\$/lb)				
Fert	NA	NA	23.91	
No-till	1.14	0.53	0.48	
Filter	1.78	1.33	1.36	
Contour	1.01	1.03	1.12	
Combo	2.33	1.69	1.67	
Atrazine (\$/lb)				
Fert	NA	NA	NA	
No-till	932	614	824	
Filter	2,860	1,927	1,981	
Contour	NA	NA	NA	
Combo	3,966	2,653	2,890	

Table 15. Cost of load reduction (\$/lb) as manifested at the mouth of the Pigeon River

Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter strips, and contour farming

suggested by their load reduction effectiveness alone. On the other hand, contour farming, although not always yielding high load reductions, becomes economically more acceptable than filter strips. Even fertilizer eduction shows high cost-effectiveness in the Pigeon and Elkhart Rivers (Tables 15-16) watersheds for TP. These observations are a direct result of the high cost for installing and maintaining filter strips (\$100/acre initial establishment plus a rent of \$93.50 per acre per year) and the low costs of the no-till (\$3.08/acre/yr), contour farming (\$6.80/acre), and fertilizer reduction (\$2.64/acre/yr) practices.

	Implementation rate			
	(70 25%	$\frac{760110111110}{2504}$		
Total P (\$/lb)	2370	3070	1370	
Fert ^a	20.96	27.69	26.08	
	29.86	27.68	26.98	
No-till	72.21	43.63	51.47	
Filter	59.43	55.46	53.01	
Contour ^d	56.46	52.20	50.73	
Combo ^e	84.21	76.46	74.09	
Sediment				
(\$/ton)				
Fert	NA	NA	NA	
No-till	19.40	18.66	13.02	
Filter	83.12	80.49	55.98	
Contour	54.19	56.11	40.64	
Combo	95.26	90.68	64.38	
Total N (\$/lb)				
Fert	NA	NA	NA	
No-till	0.48	0.44	0.39	
Filter	1.18	1.20	1.16	
Contour	1.36	1.18	1.11	
Combo	1.51	1.51	1.44	
Atrazine (\$/lb)				
Fert	NA	NA	NA	
No-till	567	422	364	
Filter	1,621	1,446	1,185	
Contour	NA	NA	NA	
Combo	2,280	1,988	1,614	

Table 16. Cost of load reduction (\$/lb) as manifested at the mouth of the Elkhart River

^a Fertilization application rate reduction of 25%

^b No-till for corn or corn silage

^c Edge-of-field filter strips

^d Contour farming

^e Combination of no-till, edge-of-field filter strips, and contour farming

6.4 Concentration Reductions

Another important observation from Tables 14-16 is the general trend of increasing cost-effectiveness (decreasing \$/lb[ton] values) of the no-till practice with increasing implementation rate of this BMP. This increase in cost-effectiveness for no-till is most prominent when the implementation rate goes from 25% to 50%. Even in the Fawn River watershed (Table 14) where no-till has an increasing per pound cost for TP, the cost increment is slowed from the 50% implementation rate to 75%. The general trend of decreasing per pound (ton) cost with increasing implementation rate is also shown for other three BMPs and the "combo" scenario, but to a lesser degree (e.g., fertilization reduction) or not as consistent (e.g., contour farming). Because increase in total cost with increase in BMP implementation rate is nearly linear (Tables 11-13), the decrease in per pound (ton) cost of load reductions by these BMP is the result of accelerated increase in load reductions when implementation rate increases. This suggests the advantage of large scale BMP implementation efforts.

It should be noted here that when total costs are considered, load reductions for all pollutants concerned are achieved simultaneously with the implementation of any of the BMPs examined here. It is likely that more than one pollutant may be targeted in any particular setting (For the St. Joseph River watershed, nutrients and sediment are of concern). As a result, the most cost-effective BMP for those pollutants would be selected. This study indicates that in such situations, no-till appears to be a BMP of choice for the three major agricultural tributary watersheds examined here in the St. Joseph River watershed.

Five-year (2000-2004) average concentrations of TP, sediment, and TN were calculated at the mouth of each of the three tributary watersheds to provide an indication of the water quality effect of BMPs. Monthly average concentrations were obtained by dividing monthly loads by monthly flow predicted by the model. These monthly concentration values were then averaged over the 5-year period to give the average concentrations. Due to uncertainties in predicting

atrazine loading and the fact that the appearance of atrazine in river water is concentrated in the two month period of May-June (Results of the Lake Michigan Mass Balance Study: Atrazine Data Report, 2001: <u>http://www.epa.gov/glnpo/lmmb/results/atra_final.pdf</u>), 5-year average concentrations for atrazine were not calculated in this study.

It should be noted here that SWAT at its core is a runoff and pollutant loading model. It is not designed to fully simulate concentration changes in the modeled watershed. Therefore, concentrations derived using the method describe above should be treated with care in their application. The values listed in Tables 17-19 are intended to provide an overall picture of the effects of BMPs on concentrations manifested at the mouth of each tributary watershed. They were not calibrated against local monitoring data. Therefore, although these concentration estimates were compared to the average values of available monitoring data at the Niles station on the main stem of the St. Joseph River and found to be on the same order of magnitude (TP: 0.062 mg/L and TSS: 22.7 mg/L [data period: 1986-95], and TN: 2.5 mg/L [data period: 1980-

Table 17. Concentrations (mg/L)^a calculated at the mouth of the Fawn River

	Implementation rate		
	(% of total land)		
	25%	50%	75%
Total P	Base	line: 0.089 (1	mg/L)
Fert ^a	0.079	0.077	0.072
No-till ^b	0.072	0.070	0.066
Filter ^c	0.067	0.062	0.050
Contour ^d	0.057	0.054	0.049
Combo ^e	0.057	0.050	0.035
Sediment	Base	eline: 32.0 (n	ng/L)
Fert	32.1	32.3	32.7
No-till	30.6	24.7	19.0
Filter	29.7	24.7	18.7
Contour	26.3	23.0	18.6
Combo	28.5	20.5	11.3
Total N	Bas	eline: 3.3 (m	ig/L)
Fert	3.3	3.3	3.3
No-till	2.9	2.5	1.9
Filter	2.9	2.7	2.2
Contour	2.2	2.1	1.9
Combo	2.6	2.2	1.3

^a 5-year (2000-04) average; calculated by dividing monthly load by monthly flow and then averaging monthly values.

- ^b Fertilization application rate reduction of 25%
- ^c No-till for corn or corn silage
- ^d Edge-of-field filter strips
- ^e Contour farming

^f Combination of no-till, edge-of-field filter strips, and contour farming

Table 18. Concentrations $(mg/L)^{a}$ calculated at the mouth of the Pigeon River

	Implementation rate		
	(% of total land)		
	25%	50%	75%
Total P	Baseline: 0.072 (mg/L)		
Fert ^a	0.068	0.063	0.059
No-till ^b	0.069	0.064	0.059
Filter ^c	0.064	0.054	0.045
Contour ^d	0.049	0.044	0.040
Combo ^e	0.061	0.046	0.033
Sediment	Base	eline: 34.2 (n	ng/L)
Fert	34.4	34.8	34.6
No-till	32.8	34.2	31.0
Filter	28.9	24.6	17.5
Contour	25.7	22.8	18.4
Combo	26.2	20.0	9.4
Total N	Bas	alina: 3.4 (m	ad I
	Das	enne. 3.4 (n	ig/L)
Fert	3.4	3.4	3.4
No-till	3.3	2.9	2.4
Filter	3.1	2.6	2.2
Contour	2.4	2.1	1.9
Combo	2.9	2.2	1.5

^a 5-year (2000-04) average; calculated by dividing monthly load by monthly flow and then averaging monthly values.

^b Fertilization application rate reduction of 25%

- ^c No-till for corn or corn silage
- ^d Edge-of-field filter strips
- ^e Contour farming

^f Combination of no-till, edge-of-field filter strips, and contour farming

	Impl	lementation	rate			
	(% of total land)					
	25%	50%	75%			
Total P	Baseline: 0.085 (mg/L)					
Fert ^a	0.081	0.077	0.073			
No-till ^b	0.083	0.078	0.077			
Filter ^c	0.076	0.067	0.057			
Contour ^d	0.062	0.057	0.053			
Combo ^e	0.073	0.060	0.048			
Sediment	Base	line: 20.3 (n	ng/L)			
Fert	20.4	20.6	20.9			
No-till	18.2	15.6	9.4			
Filter	18.5	16.4	10.5			
Contour	18.0	16.3	12.1			
Combo	17.1	13.0	4.1			
Total N	Base	eline: 3.9 (m	οσ/L.)			
Fert	3 0	3 0	30			
No-till	3.5	3.2	2.9			
Filter	3.4	3.0	2.5			
Contour	2.8	2.6	2.3			
Combo	3.2	2.6	1.9			

Table 19. Concentrations (mg/L) ^a calculated atthe mouth of the Elkhart River

^a 5-year (2000-04) average; calculated by dividing monthly load by monthly flow and then averaging monthly values.

^b Fertilization application rate reduction of 25%

^c No-till for corn or corn silage

^d Edge-of-field filter strips

^e Contour farming

^f Combination of no-till, edge-of-field filter strips, and contour farming

81]), they should not be used as evidence of high or low pollutant levels at these particular tributary watersheds or as water quality goals for these watersheds.

Tables 17-19 show similar BMP effects on pollutant concentrations as on pollutant loadings (Tables 8-10). However, there is one significant difference. Contour farming becomes the most effective BMP in reducing pollutant concentrations in all the watersheds and for nearly all the pollutants. This reveals an important aspect of examining water quality improvement of BMPs through concentration changes. As indicated earlier, this SWAT modeling study used a reduction of the P factor (management practice factor) of the MUSLE equation to simulate the effect of contour farming on soil erosion control. Consequently, contouring farm here reduced soil and associated nutrient loadings from subwatersheds implemented with this BMP but did not reduce runoff from these subwatersheds. Other BMPs, including no-till, filter strips, and the "combo" option, reduced both 1.9 loadings and flow. As a result, concentrations, as calculated by dividing load by flow, were reduced the most with contour farming. The fertilizer reduction BMP was similar to contour farming in this regard but because it reduced loadings to a much smaller degree than contour farming, its impact on concentration was not as great. In summary, when concentrations are examined, flow amount becomes an important consideration. A

potential improvement to this modeling study is the incorporation of a runoff reduction for the contour farming simulations by adjusting the associated curve numbers (CN2; Table 2).

Besides contour farming, edge-of-field filter strips also provide similar concentration improvements for TP for all three tributary watersheds, especially at high implementation rates. No-till, on the other hand, provides comparable concentration improvements for sediment and TN in all three watersheds except for sediment in the Pigeon River.

7.0 Model Caveats and Potential Improvements

This section describes some key limitations of this modeling study. Some suggestions are also provided on how to improve the model for future studies, potentially TMDL development work,

that might one day be conducted for the St. Joseph River watershed. Because of its agriculturedominant nature, the watershed is very well suited to be modeled by SWAT. Results and experience gained from this current study are a valuable source of information for such a future modeling work.

Due to time and budget constraints, this study opted to discretize the entire St. Joseph River watershed into 229 subwatersheds but assign only one HRU to each subwatershed. Jha et al. (2004) reported that the optimal threshold subwatershed sizes, relative to the total drainage area of the entire watershed, required to accurately predict flow, sediment, and nutrients should be between 2 and 5 percent. With 229 subwatersheds, the average size of the subwatersheds in this study obviously meets this criteria. Nevertheless, because only one HRU was used for each subwatershed based on the dominant landuse type and soil type for that subwatershed, the model setup resulted in a landuse distribution that was high in agricultural land (98% including pasture) and low in forest and other landuses. As a comparison, the landuse distribution according the USGS 1992 landuse data (Figure 1) has agricultural land of 71% and forest 16%.

However, increasing the HRU number (by using a more refined combination of soil type and landuse) for the model to 570 (a little over two HRUs per subwatershed) resulted in a landuse distribution of 94% agriculture and 5% forest. That's only 4% decrease in agricultural land compared to the one HRU per subwatershed scenario. This suggests that in order to truly present the landuse distribution of the St. Joseph River watershed, we may well need three and likely more HRUs per subwatershed. Considering the time and effort necessary to set up the model with so many HRUs for their particular management files and change these files during each simulation for calibration, validation, and BMP simulations;, the computation iterations required to simulate watershed processes for each HRU; and the time needed to process and analyze the model outputs with a high number of HRUs; it was simply not practical to do so with the project time frame and available resources.

However, the over-representation of agricultural land in the watershed did lead to some overadjustment of parameters in the model (e.g., CN2 and ESCO; Table 2) in order to compensate high flow and loadings for some subwatersheds resulting from this over-representation. As noted above, the shear size of the St Joseph River watershed and the high number of HRUs required to remedy this over-representation make it difficult to correct this over-adjustment of parameters. An obvious way for improvement is a well funded finer scale SWAT study. Another potential improvement to this modeling study would be to choose several representative subwatersheds (e.g., one for agriculture, one for forest, and one for urban) and model them with as many HRUs as needed to fully replicate the landuse and soil distributions in these subwatersheds. Then calibrated parameters from these subwatersheds can be applied to other similar subwatersheds without further calibration or only minor changes. Care, however, should be taken when selecting representative subwatersheds as to ensure these subwatersheds have adequate monitoring data and local agricultural management information for a rigorous calibration.

It should also be pointed out here that because the model was calibrated for TP and TSS against results from Robertson (1997)'s statistical estimates, not monitoring data, and the potential for such estimates to be low (Richards, 1998; see Section 4.2), the over-adjustment of some of the

model parameters (e.g., USLE_P and SOL_ORGP) may very well be a result of these lower-than-actual benchmark values used in the calibration.

While SWAT calculates the deposition and re-entraining of sediment carried by surface runoff in the routing channels, it should be noted that the current version of the SWAT model does not have a fully functioning module that simulates the streambank erosion and channel degradation processes (Neitsch et al, 2002a). Therefore, sediment loads from these in-stream processes were not considered in this study. The St. Joseph River watershed Management Planning process developed a simple but effective protocol using field survey results to quantify streambank erosion at road-stream crossings (http://www.stjoeriver.net/wmp/road-stream.htm). In addition, the US Army Corps of Engineers is currently working on a hydraulic sediment model for the watershed. It is expected that that model will provide some key information regarding streambank erosion and channel degradation in the watershed.

It should also be noted that due to the agricultural nature of the SWAT model and the overrepresentation of agricultural land in the model, urban areas in the watershed were not adequately simulated in the model. This is acceptable considering the focus of this SWAT modeling study was to quantify the effectiveness of agricultural BMPs. However, that is not an indication that pollutant loadings from urban areas are not important. Urban loadings, although small compared to agricultural sources for in entire St. Joseph River watershed, are particularly damaging to local receiving streams due to its concentrated flow and high contents of phosphorus and other pollutants. In addition, the expansion of urban areas in the watershed poses further threats to our efforts to improve water quality of the watershed. The reader is referred to the urban BMP portion of the St. Joseph River Watershed Management Plan for more information.

Finally, it should be pointed out that due to the project scope and more prominently, time constraint, only a portion of the data generated from this modeling study were analyzed to meet current watershed management requirements. There are much more data available for other watershed management applications. For example, load reductions resulting from BMPs for each subwatershed in the three tributary watersheds can be quantified to identify local water quality improvement potentials. Such information will be there for extraction and analysis if a watershed plan implementation phase starts.

In addition, the modeling exercise has established a working SWAT model for the St. Joseph River watershed. Potential improvements to the model setup were also identified. Therefore, the foundation has been laid down for a more comprehensive and finer scale SWAT modeling for the entire St. Joseph River watershed or some of its subwatersheds. This has important implications for any future TMDL or similar modeling work to be conducted in the watershed using the SWAT model.

8.0 Conclusions

This study developed a reasonably calibrated SWAT model for the St. Joseph River watershed, given the limited availability of monitoring data and the scope of the study. The calibrated model was used to simulate the current (baseline) loading conditions of TP, TN, and sediment for each

of the 229 subwatersheds delineated in the St. Joseph River watershed, and also atrazine load at the outlets of three major agricultural tributary watersheds (the Fawn River, the Pigeon River, and the Elkhart River).

Comparing results from the SWAT model with those from the empirical nonpoint source loading model showed that these two models generally agreed on the relative capability of subwatersheds in generating TP and sediment loads. It was believed that the SWAT model, by considering land and soil characteristics and pollutant movement on the land and in the water, gave more realistic load estimates than the empirical model. On the other hand, because of omission of minor landuse types (e.g., urban and forest) in the SWAT model in this study, results from the empirical model should be given appropriate consideration for subwatersheds with a significant presence of these minor landuse types.

Five agricultural BMP scenarios were simulated for the three major tributary watersheds to derive the effects of BMP implementation would have on water quality at the mouth of each tributary watersheds. Among the four individual agricultural BMPs considered, edge-of-field filter strips are overall the most effective in reducing loadings for all the pollutants examined. No-till for corn (including corn silage) is particularly effective for sediment and TN in watersheds with more permeable soils and dominated by the corn-soybean rotation (the Fawn River watershed in this study). The combined BMP scenario (no-till, filter strips, and contour farming), as expected, provided the most load reductions in all cases. However, it was shown that effectiveness gains will be diminished when more than one BMPs are implemented on top of one another.

In terms of costs, no-till emerged as the most cost-effective BMP in most cases, due to its low per acre implementing cost (\$3.08/ac/yr) and the high per acre cost of establishing (\$100/ac) and maintaining (\$93.50/ac/yr) filter strips. It was also shown that as the implementation rate (% of watershed covered by a BMP) increased, all BMPs had an increasing cost-effectiveness, suggesting the advantage of large scale BMP implementation efforts.

For the effects of BMPs on pollutant concentrations at the mouth of each tributary watershed, the simulation results revealed that flow reduction was an important factor in deciding the concentrations at watershed outlets. Not considering contour farming (due to inadequate simulation of flow reduction), edge-of-field filter strips provided greatest concentration improvements for TP for all three tributary watersheds, especially at high levels of implementation. No-till, on the other hand, provides comparable concentration improvements for sediment and TN in all three watersheds except for sediment in the Pigeon River.

In summary, in spite of the coarse nature of model setup and the limited monitoring data available for model calibration, this SWAT modeling study yielded valuable quantitative information on the effectiveness of agricultural BMPs in reducing pollutant loads and improving water quality, and the costs associated with these improvements. Based on this study, this report also pointed out the potential improvements that a future finer scale SWAT model can make.

9.0 References

Arnold, J. G., and R.S. Muttiah, and R. Srinivansan, and P. M. Allen. 2000. Regional Estimation of Base Flow and Groundwater Recharge in the Upper Mississippi River Basin. *Journal of Hydrology*. 227:21-40.

Devlin D., et al. 2003. Water Quality Best Management Practices, Effectiveness, and Cost for Reducing Contaminant Losses from Cropland. Kansas State University, February, 2003. Available at <u>http://www.oznet.ksu.edu/library/h20ql2/mf2572.pdf</u>.

Forster, D. L. 2002. Effects of Conservation Tillage on the Performance of Lake Erie Basin Farms. *J. Environ. Qual.* 31:32-37.

Haper, J. K. 1996. *Economics of Conservation Tillage*. Conservation Tillage Series No. 6. The Pennsylvania State University-College of Agricultural Sciences Cooperative Extension. University Park, PA.

Jha, M., P.W. Gassman, S. Secchi, R. Gu, and J. Arnold. 2004. Effect of Watershed Subdivision on SWAT Flow, Sediment, and Nutrient Predictions. *JAWRA*. 40:811-825.

Kurkalova, L., C. Kling, and J. Zhao. 2003. *Green Subsidies in Agriculture: Estimating the Adoption Costs of Conservation Tillage from Observed Behavior*. Working Paper 01-WP 286 April 2003 (Revised). Center for Agricultural and Rural Development. Iowa State U. Available at <u>http://www.econ.iastate.edu/research/webpapers/paper_10354.pdf</u>. Massey, R. E. 1997. *No-Tillage and Conservation Tillage: Economic Considerations*. University of Missouri-Columbia, Outreach & Extension.

Neitsch, S. L., J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J.R. Williams. 2002a. *Soil and Water Assessment Tool User's Manual—Version 2000*. TWRI Report TR-192. Texas Water Resources Institute, College Station, Texas. Available at http://www.brc.tamus.edu/swat/downloads/doc/swatuserman.pdf.

Neitsch, S. L., J. G. Arnold, J. R. Kiniry, J. R. Williams, and K. W. King. 2002b. *Soil and Water Assessment Tool Theoretical Documentation—Version 2000.* TWRI Report TR-191. Texas Water Resources Institute, College Station, Texas. Available at <u>http://www.brc.tamus.edu/swat/downloads/doc/swat2000theory.pdf</u>.

Ohio Environmental Protection Agency (OH EPA). 2003. *Total Maximum Daily Load for the Stillwater River Basin—Draft Report*. July 2003. Available at http://web.epa.state.oh.us/dsw/tmdl/StillwaterTMDL.html.

Robertson, M. 1997. Regionalized Loads of Sediment and Phosphorus to Lakes Michigan and Superior—High Flow and Long-term Average. *J. Great Lakes. Res.* 23:416-439.

Richards, R.P. 1998. *Estimation of Pollutant Loads in Rivers and Streams: A Guidance Document for NPS programs*. Project report prepared under Grant X998397-01-0, U.S.

Environmental Protection Agency, Region VIII, Denver. 108 p. Available at <u>http://www.heidelberg.edu/wql/Load_Est1.pdf</u>.

Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas, and L. Hauck. 2002. Application of a watershed model to evaluate management effects on point and nonpoint source pollution. *Transactions of the ASAE* 44:1559-1570.

Santhi, S., J. G. Arnold, J. R. Williams, W. A. Dugas, R. Srinivasan, and L. M. Hauck. 2001 Validation of the SWAT Model on a Large River Basin with Point and Nonpoint Sources. *JAWRA*. 37:1169-1188.

Schwab, Gerald and E. Wittenberg. 2004. 2003 Michigan Land Values. Michigan State University Department of Agricultural Economics Report No. 620. April 2004. Available at http://www.aec.msu.edu/agecon/aecreports/aec620.pdf.

Smith, R.A., G.E. Schwarz, R.B. Alexanda. 1997. Regional interpretation of water-quality monitoring data. *Water Resources Research* 33:2781-2798.

U.S. Environmental Protection Agency (U.S. EPA). 2003a. *Economic Analyses of Nutrient and Sediment Reduction Actions to Restore Chesapeake Bay Water Quality*. U.S. EPA Region III-Chesapeake Bay Program Office, Annapolis, MD. September, 2003.

U.S. Environmental Protection Agency (U.S. EPA). 2003b. *National Management Measures for the Control of Nonpoint Pollution from Agriculture*. EPA-841-B-03_004. U.S. EPA-Office of Water, Washington DC. July, 2003.

Wesley, J.K., and J.E. Duffy. 1999. *St. Joseph River Assessment*. Michigan Department of Natural Resources, Fisheries Division, Special Report 24. Ann Arbor, Michigan.

APPENDIX

Annual Subwatershed Pollutant Loadings

Table A: SWAT annual subwatershed loadings (annual average 2000-2004)

Sub.†	Water Course	LU‡	Area (ac)	TP (lbs/ac/yr)	Sediment (lbs/ac/yr)	TN (lbs/ac/yr)
1	Brandywine Creek	AGRR	19,958	1.621	4,461	30.4
2	N Br Paw Paw River	AGRR	18,168	0.267	549	8.5
3	S Br Paw Paw River	AGRR	4,892	0.190	386	5.3
4	Paw Paw River	AGRR	17,069	1.538	2,932	24.0
5	Mud Lake Drain	AGRR	9,851	1.534	5,298	34.0
6	Paw Paw River	AGRR	17,772	2.002	8,111	45.2
7	Brush Creek	AGRR	26,747	0.375	684	9.9
8	E Br Paw Paw River	AGRR	21,801	0.361	772	11.7
9	S Br Paw Paw River	AGRR	10,433	0.229	278	4.8
10	Paw Paw Lake	FRSD	8,998	0.002	40	0.7
11	Paw Paw River	AGRR	12,006	1.629	2,785	23.6
12	Mill Creek	AGRR	18,620	1.649	2,981	23.2
13	Nottawa Creek	AGRR	24,639	0.181	982	9.0
14	Alder Creek	AGRR	10,311	0.449	1,860	15.1
15	St. Joseph River	URLD	5,987	0.007	2,926	13.5
16	Tekonsha Creek	AGRR	13,899	0.103	548	6.3
17	Flowerfield Creek	AGRR	15,798	0.410	2,371	17.5
18	St. Joseph River	AGRR	12,226	0.271	967	8.8
19	Coldwater River	AGRR	7,246	0.156	836	7.7
20	Portage Creek	AGRR	17,482	0.288	1,560	12.8
21	Portage River	AGRR	3,085	0.199	548	5.8
22	St. Joseph River	PAST	15,564	0.005	1,990	9.7
23	Pipestone Creek	PAST	7,779	0.005	2,004	9.8
24	Dowagiac River	AGRR	32,884	0.303	393	7.2
25	S Br Hog Creek	AGRR	14,923	0.074	454	5.6
26	Bear Creek	AGRR	12.730	0.463	1.772	15.4
27	Hog Creek	AGRR	14,225	0.566	281	3.8
28	Coldwater River	AGRR	19.305	0.108	257	2.9
29	Silver Creek	AGRR	11.360	0.273	346	6.9
30	Rocky River	AGRR	25,284	1.684	5.415	34.3
31	Dowagiac River	AGRR	22,407	0.233	284	4.8
32	Nottawa Creek	AGRR	4,496	0.083	236	4.0
33	St. Joseph River	AGRR	14.953	0.090	387	5.4
34	Little Portage Creek	AGRR	10.287	0.370	1.156	11.3
35	St. Joseph River	AGRR	4.055	0.296	997	10.8
36	Dowagiac River	AGRR	11.162	1.140	1.729	15.7
37	Dowagiac Creek	AGRR	9.833	1.361	2.401	20.7
38	Swan Creek	AGRR	3,844	0.069	287	4.7
39	Beebe Creek	AGRR	11.811	0.302	1.944	15.6
40	St. Joseph River	AGRR	8,313	0.638	1,323	11.6
41	Portage River	AGRR	23.578	0.059	226	3.0
42	Swan Creek	AGRR	12.820	0.252	896	83
43	Little Swan Creek	AGRR	20 904	0.154	878	7.6
44	Spring Creek	AGRR	21,481	0.095	284	4.4
45	Prairie River	AGRR	12 345	0.147		83
46	Prairie River	AGRR	16 393	0.147	318	5.0
47	Pokagon Creek	AGRR	21 284	1 166	2 017	21.6
48	Mill Creek	FRSD	15 838	0.001	17	1 4
49	Fawn River	AGRR	17 746	0.001	342	4.9
50	Dowagiac River	AGRR	13 110	0.811	2 424	18.1
51	McCov Creek	AGRR	14 992	0.011	3 213	20.5
52	St. Joseph River	AGRR	23 977	0.449	3 141	20.5
52	Fawn River	AGRR	1/ 105	0.432	5,141	5.6
54	Sherman Mill Creek	AGRR	15 248	0.094	731	10.7
55	Mill Creek	AGRR	12 114	1 576	2 671	22.1
56	Unnamed Tributary	AGRR	2,114 2 2/2	0.357	2,071	23.1
57	St Joseph Divor	FRED	1 812	0.001	11	0.0
50	Brandwying Croak	ACDD	4,012	0.001	205	6.0
30	Dianuywille Creek	AOKK	13,137	0.239	295	0.3

Table A: SWAT annua	l subwatershed lo	adings (annual	average 2000-2004)	(Continued)
		((

Sub.†	Water Course	LU‡	Area (ac)	TP (lbs/ac/yr)	Sediment (lbs/ac/yr)	TN (lbs/ac/yr)
59	Himebaugh Drain	AGRR	7,751	0.268	410	4.2
60	Fawn River	AGRR	15,062	0.138	344	3.6
61	Nye Drain	AGRR	8,021	0.074	327	4.2
62	Fawn River	AGRR	6,874	0.104	515	8.7
63	Fawn River	AGRR	10,769	0.560	1,890	17.1
64	Fawn River	AGRR	8,359	0.107	568	9.4
65	St. Joseph River	AGRR	4,272	0.356	441	8.4
66	Pigeon River	AGRR	22,452	0.104	319	5.1
67	Pigeon River	AGRR	6,974	0.086	363	5.1
68	Lake Shipshewana	AGRR	12,599	0.217	1,428	10.6
69	Crooked Creek	AGRR	10,908	0.888	966	10.7
70	St. Joseph River	AGRR	10,632	0.192	762	9.9
71	Little Elkhart River	AGRR	12,757	1.123	6,305	37.1
72	St. Joseph River	AGRR	11,967	0.198	333	5.7
73	Juday Creek	AGRR	22,862	0.159	252	4.3
74	Pigeon River	AGRR	17,209	0.057	372	3.9
75	Fly Creek	AGRR	16,213	0.321	1,993	13.0
76	St. Joseph River	AGRR	5,576	0.425	2,912	20.9
77	Pine Creek	AGRR	19,759	0.574	4,008	25.7
78	Petersbaugh Creek	AGRR	10,530	0.056	201	3.2
79	St. Joseph River	AGRR	3,958	0.296	1,141	10.1
80	St. Joseph River	AGRR	7,923	0.061	230	3.7
81	St. Joseph River	URLD	196	0.004	1,087	7.4
82	Christiana Creek	AGRR	4,100	0.062	229	3.9
83	St. Joseph River	WATR	121	0.047	22,097	64.2
84	Christiana Creek	WATR	52	0.062	54,155	85.4
85	Elkhart River	AGRR	8,909	0.303	1,838	14.2
86	Little Elkhart Creek	AGRR	3,548	0.825	4,591	30.6
87	Little Elkhart Creek	AGRR	9,123	0.141	1,369	15.5
88	Fly Creek	AGRR	11,086	0.273	1,592	10.9
89	Cobus Creek	AGRR	22,614	0.178	292	4.9
90	St. Joseph River	AGRR	12,148	0.057	204	3.2
91	Little Elkhart Creek	AGRR	6,918	0.113	831	10.9
92	Rowe Eden Ditch	AGRR	20,765	0.102	539	7.9
93	Emma Creek	AGRR	12,121	0.159	931	7.5
94	Little Elkhorn River	AGRR	12,079	0.106	335	5.4
95	Rock Run Creek	AGRR	14,469	0.651	2,871	21.5
96	Elkhart River	AGRR	4,941	0.366	1,497	12.8
97	Grimes Ditch	AGRR	12,554	1.193	2,436	19.1
98	Baugo Creek	AGRR	14,569	0.775	4,443	29.5
99	Little Elkhart Creek	AGRR	9,416	0.137	870	7.6
100	Little Elkhart Creek	AGRR	13,964	0.136	868	7.8
101	Stony Creek	AGRR	12,411	0.613	2,467	18.6
102	Elkhart River	AGRR	15,681	0.186	1,107	8.7
103	N Br Elkhart River	AGRR	9,426	0.251	1,571	10.8
104	Mid. Branch Elkhart R.	AGRR	10,958	0.358	2,324	14.6
105	Dausman Ditch	AGRR	7,994	0.338	1,937	14.9
106	Turkey Creek	AGRR	10,918	0.434	2,991	21.2
107	N Br Elkhart River	AGRR	19,224	0.107	738	6.7
108	S Br Elkhart River	AGRR	17,083	0.338	1,802	13.3
109	Berlin Court Ditch	AGRR	11,559	1.008	4,796	31.6
110	Turkey Creek	AGRR	9,635	0.557	2,966	21.9
111	Turkey Creek	AGRR	686	0.266	1,554	12.7
112	Turkey Creek	AGRR	12,009	0.297	1,257	11.6
113	Wabee Lake	AGRR	9,152	0.499	3,298	22.3
114	Turkey Creek	AGRR	13,340	0.555	3,821	24.8
115	Croft Ditch	AGRR	15,852	0.357	4,718	22.9
116	S Br Elkhart River	AGRR	11,008	0.391	5,433	25.0

Sub.†	Water Course	LU‡	Area (ac)	TP (lbs/ac/yr)	Sediment (lbs/ac/yr)	TN (lbs/ac/yr)
117	Carrol Creek	AGRR	11,421	0.835	5,148	28.7
118	Beebe Creek	AGRR	15,016	0.485	1,937	16.2
119	S Br Hog Creek	AGRR	8,950	0.354	1,382	12.4
120	St. Joseph River	AGRR	2,344	0.223	1,275	11.1
121	St. Joseph River	AGRR	16,348	0.294	1,138	10.3
122	St. Joseph River	PAST	13,483	0.005	2,434	11.2
123	St. Joseph River	PAST	15,924	0.006	3,022	13.0
124	Paw Paw River	PAST	9,963	0.002	301	4.6
125	St. Joseph River	AGRR	13,701	0.271	366	7.7
126	St. Joseph River	AGRR	20,938	1.274	2,109	17.2
127	Baugo Creek	AGRR	11,590	0.547	2,246	17.8
128	Turkey Creek	AGRR	9,611	0.097	1,167	8.6
129	Turkey Creek	AGRR	19,458	0.424	1,968	17.4
130	Elkhart River	AGRR	4,136	0.283	1,853	12.3
131	S Br Elkhart River	AGRR	5,068	1.315	10,401	45.1
132	Forker Creek	AGRR	11,759	1.508	11,380	48.2
133	Henderson Lake	AGRR	12,621	0.161	1,248	10.0
134	Little Elkhart Creek	AGRR	12,187	0.373	2,463	15.2
135	Turkey Creek	AGRR	11,492	0.774	3,176	23.7
136	Turkey Creek	AGRR	10,955	0.938	4,206	28.9
137	Little Turkey Lake	AGRR	12,432	0.411	2,826	16.8
138	Pigeon Creek	AGRR	7,961	0.391	738	5.8
139	Pigeon Creek	AGRR	14,004	1.378	6,868	40.6
140	Mud Lake	AGRR	6,450	0.573	2,080	17.3
141	Pigeon Creek	AGRR	12,837	0.927	1,026	11.2
142	Pigeon Creek	AGRR	11,322	0.269	1,832	13.4
143	Buck Creek	AGRR	19,567	0.211	1,241	9.5
144	Pigeon River	AGRR	10,432	0.139	779	6.4
145	S Br Paw Paw River	AGRR	13,281	0.349	629	9.5
146	Eagle Lake Drain	AGRR	10,184	0.794	2,354	17.7
147	Dowagiac Creek	AGRR	23,182	1.531	2,524	21.4
148	Dowagiac Creek	AGRR	14,912	1.000	2,700	20.7
149	Dowagiac River	AGRR	17,497	1.137	1,724	15.7
150	Diamond Lake	AGRR	9,386	0.905	2,054	16.4
151	Christiana Creek	AGRR	15,313	1.209	4,203	27.5
152	Paradise lake	AGRR	8,928	1.753	5,992	36.7
153	Christiana Creek	AGRR	25,569	1.158	1,952	17.4
154	Christiana Creek	AGRR	13,650	0.944	1,526	13.9
155	Flowerfield Creek	AGRR	3,224	0.426	1,474	14.2
156	Flowerfield Creek	AGRR	10,315	0.330	1,041	9.8
157	St. Joseph River	AGRR	7,626	0.092	270	4.4
158	Portage River	AGRR	8,906	0.078	218	3.6
159	St. Joseph River	AGRR	5,782	0.082	345	5.1
160	Bear Creek	AGRR	11,550	0.374	1,173	11.4
161	Portage River	AGRR	19,353	0.450	1,576	14.2
162	Portage River	AGRR	20,075	0.448	1,290	14.2
163	Little Portage Creek	AGRR	17,967	0.336	1,758	14.6
164	Nottawa Creek	AGRR	16,602	0.422	1,707	14.1
165	St. Joseph River	AGRR	14,217	0.158	848	7.8
166	St. Joseph River	AGRR	28,073	0.239	1,394	11.6
167	St. Joseph River	AGRR	3,238	0.354	393	4.9
168	Nottawa Creek	AGRR	15,868	0.258	1,560	12.8
169	St. Joseph River	AGRR	10,393	0.173	936	8.4
170	Soap Creek	AGRR	8,169	0.363	1,403	12.3
171	Prairie River	AGRR	12,179	0.163	542	9.7
172	Prairie River	AGRR	4,733	0.072	289	4.3
173	Prairie River	AGRR	19,225	0.135	395	5.5
174	Prairie River	AGRR	17,925	0.172	232	2.7
175	Fawn River	AGRR	7,435	0.306	454	4.6

Table A: SWAT annual subwatershed loadings (annual average 2000-2004) (Continued).

176 Snow Lake AGRR 17,550 0.658 4,577 28.5 177 Crocke AGRR 13,485 0.703 940 96 178 Sand Creek AGRR 13,485 0.703 940 96 179 Snoch Creek AGRR 43,4602 0.261 937 8.5 180 Swan Creek AGRR 4,548 0.341 1.918 14.3 181 St.Joseph River AGRR 9.409 0.432 728 6.9 184 Baugo Creek AGRR 10,609 0.367 2.153 16.1 185 Eikhar River AGRR 8,664 0.222 1.228 10.2 187 Waldron Lake AGRR 12,439 0.149 0.017 13.6 188 Rigon Creek AGRR 12,367 0.077 3,348 24.0 190 Coldwater Lake AGRR 12,367 0.077 3,348 24.0 191 Didat	Sub.†	Water Course	LU‡	Area (ac)	TP (lbs/ac/yr)	Sediment (lbs/ac/yr)	TN (lbs/ac/yr)
177 Crooked Creek AGRR 8,010 2.847 6.389 40.7 178 Sand Creek AGRR 19,896 0.473 868 8.4 180 St. Joseph River AGRR 19,896 0.473 868 8.4 181 St. Joseph River AGRR 4,548 0.341 1.918 14.3 182 St. Joseph River AGRR 10,609 0.432 7.28 6.9 183 St. Joseph River AGRR 10,609 0.432 7.28 16.1 184 Baugo Creek AGRR 18,616 0.222 1.228 10.2 185 Solomon Creek AGRR 16,867 0.334 2.107 13.6 186 Solomon Creek AGRR 12,398 0.928 8.323 43.0 190 Coldwater Lake AGRR 12,443 0.169 200 2.1 191 Fisher Creek AGRR 12,443 0.169 2.00 3.7 191 Fisher Creek AGRR 12,642 0.749 1.011.1 11.1	176	Snow Lake	AGRR	17,556	0.658	4,577	28.5
178 Sand Creek AGRR 13,485 0.703 940 9.6 179 St. Joseph River AGRR 34,602 0.261 937 8.5 181 St. Joseph River AGRR 4,548 0.341 1.918 1.131 181 St. Joseph River AGRR 9,409 0.432 728 6.9 184 Baugo Creek AGRR 10,609 0.367 2.153 16.1 185 Elkhart River AGRR 10,609 0.342 1.228 10.2 187 Waldron Lake AGRR 12,398 0.958 8,323 43.0 188 Rock Run Creek AGRR 12,398 0.958 8,323 43.0 190 Coldwater Lake AGRR 12,367 0.079 3.44 206 2.7 191 Fisher Creek AGRR 12,367 0.079 3.65 1.92 4.4 192 Marbie Lake AGRR 12,567 0.749 1.009 <t< td=""><td>177</td><td>Crooked Creek</td><td>AGRR</td><td>8,010</td><td>2.847</td><td>6,389</td><td>40.7</td></t<>	177	Crooked Creek	AGRR	8,010	2.847	6,389	40.7
179 St. Joseph River AGRR 19.896 0.473 868 8.4 180 Swan Creek AGRR 34.602 0.261 937 8.5 181 St. Joseph River AGRR 1.511 0.119 119 12.1 182 St. Joseph River AGRR 9.409 0.432 728 6.9 184 Baugo Creek AGRR 10.609 0.367 2.153 16.1 185 Elkhart River AGRR 8.664 0.222 1.228 10.2 187 Waldron Lake AGRR 15.867 0.334 2.107 13.6 188 Pigcon Creek AGRR 13.049 0.725 3.348 24.0 190 Fisher Creek AGRR 12.357 0.077 385 4.4 191 Tishassee Drain AGRR 12.367 0.077 385 4.4 191 Talabassee Drain AGRR 10.532 0.147 793 6.5 193 </td <td>178</td> <td>Sand Creek</td> <td>AGRR</td> <td>13,485</td> <td>0.703</td> <td>940</td> <td>9.6</td>	178	Sand Creek	AGRR	13,485	0.703	940	9.6
180 Swan Creek AGRR 34,602 0.261 937 85.5 181 St. Joseph River AGRR 11,311 0.119 119 2.1 182 St. Joseph River AGRR 9,409 0.432 728 6.9 184 Baugo Creek AGRR 10,609 0.367 2,153 16.1 185 Elkhart River AGRR 10,609 0.377 2,153 16.1 187 Walfron Lake AGRR 16.867 0.334 2,107 13.6 188 Brock Run Creek AGRR 12,398 0.958 8,323 43.0 190 Coldwater Lake AGRR 12,343 0.169 200 2.1 191 Fisher Creek AGRR 12,367 0.077 385 4.4 193 Tallabassee Drain AGRR 12,362 0.147 793 6.5 194 E Br Sauk River AGRR 12,642 0.749 1,099 10.7 <t< td=""><td>179</td><td>St. Joseph River</td><td>AGRR</td><td>19,896</td><td>0.473</td><td>868</td><td>8.4</td></t<>	179	St. Joseph River	AGRR	19,896	0.473	868	8.4
181 St. Joseph River AGRR 4.548 0.341 1.918 14.3 182 St. Joseph River AGRR 11.311 0.119 119 2.1 183 St. Joseph River AGRR 10.609 0.367 2.153 16.1 184 Blaugo Creek AGRR 8.815 0.470 2.070 16.6 185 Bihant River AGRR 8.664 0.222 1.228 10.2 187 Waldron Lake AGRR 16.867 0.334 2.107 13.6 188 Pigeon Creek AGRR 12.439 0.958 8.323 43.0 190 Coldwater Lake AGRR 12.443 0.169 200 2.1 191 Fisher Creek AGRR 12.367 0.071 385 4.4 192 Mathe Lake AGRR 12.532 0.147 793 6.5 193 Mathassee Drain AGRR 12.642 0.749 1.099 10.7 <td< td=""><td>180</td><td>Swan Creek</td><td>AGRR</td><td>34,602</td><td>0.261</td><td>937</td><td>8.5</td></td<>	180	Swan Creek	AGRR	34,602	0.261	937	8.5
182 St. Joseph River AGRR 11,311 0.119 119 2.1 183 St. Joseph River AGRR 9,409 0.432 728 6.9 184 Baugo Creek AGRR 10,609 0.367 2,153 16.1 185 Elkhart River AGRR 8,664 0.222 1,228 10.2 187 Waldron Lake AGRR 16,867 0.334 2,107 13.6 188 Pigeon Creek AGRR 13,049 0.725 3,348 24.0 190 Coldwater Lake AGRR 12,367 0.077 3.85 4.4 193 Tallabassee Drain AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 11,351 0.355 1,982 15.1 196 Pravine River AGRR 17,753 0.718 2,727 22.7 197 </td <td>181</td> <td>St. Joseph River</td> <td>AGRR</td> <td>4,548</td> <td>0.341</td> <td>1,918</td> <td>14.3</td>	181	St. Joseph River	AGRR	4,548	0.341	1,918	14.3
183 St. Joseph River AGRR 9.409 0.432 728 6.9 184 Baugo Creek AGRR 10.609 0.367 2,153 16.1 185 Elkhart River AGRR 3.815 0.470 2,070 16.6 186 Digeon Creek AGRR 16.867 0.334 2,107 13.6 188 Pigeon Creek AGRR 12,398 0.958 8.323 43.0 189 Rock Run Creek AGRR 12,443 0.169 2000 2.1 191 Fisher Creek AGRR 12,443 0.169 2000 2.1 191 Fishassee Drain AGRR 12,457 0.077 385 4.4 193 Tallanssee Drain AGRR 12,652 0.147 793 6.5 195 Mud Creek AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 13,051 0.355 1,982 15.1 196	182	St. Joseph River	AGRR	11,311	0.119	119	2.1
I84 Baugo Creek AGRR 10,609 0.367 2,153 16.1 I85 Elkhart River AGRR 3,815 0.470 2,070 16.6 I86 Solomon Creek AGRR 8,664 0.222 1,228 10.2 I87 Waldron Lake AGRR 12,398 0.958 8,323 43.0 I89 Rock Run Creek AGRR 12,398 0.958 8,323 43.0 I90 Coldwater Lake AGRR 12,398 0.958 8,323 43.0 I91 Fisher Creek AGRR 12,367 0.077 385 4.4 I93 Tallabassee Drain AGRR 10,532 0.147 793 6.5 I95 Mud Creek AGRR 10,532 0.147 793 6.5 I95 Mud Creek AGRR 11,351 0.355 1,982 15.1 I97 Coldwater River AGRR 17,753 0.718 2,727 22.7 198	183	St. Joseph River	AGRR	9,409	0.432	728	6.9
I85 Elkhart River AGRR 3.815 0.470 2.070 16.6 186 Solomon Creek AGRR 8.664 0.222 1.228 10.2 187 Waldron Lake AGRR 16.867 0.334 2.107 13.6 188 Rock Run Creek AGRR 12.398 0.958 8.323 43.0 190 Coldwater Lake AGRR 12.443 0.169 200 2.1 191 Fisher Creek AGRR 12.443 0.169 200 2.1 192 Marthe Lake AGRR 12.537 0.077 385 4.4 193 Tallahassee Drain AGRR 12.642 0.749 1.099 10.7 194 E Br Sauk River AGRR 12.642 0.749 1.099 10.7 195 Mud Creek AGRR 13.03 0.555 1.982 15.1 198 Parine River AGRR 17.753 0.718 2.727 22.7 2	184	Baugo Creek	AGRR	10,609	0.367	2,153	16.1
186 Solomon Creek AGRR 8.664 0.222 1.228 10.2 187 Waldron Lake AGRR 16.867 0.334 2.107 13.6 188 Pigeon Creek AGRR 12.398 0.958 8.323 43.0 190 Coldwater Lake AGRR 12.443 0.169 200 2.1 191 Fisher Creek AGRR 12.443 0.169 200 2.1 191 Fisher Creek AGRR 12.367 0.077 385 4.4 193 Tallahassee Drain AGRR 10.532 0.147 793 6.5 194 B Sauk River AGRR 10.532 0.147 793 6.5 195 Mud Creek AGRR 13.083 0.229 309 3.7 196 Coldwater River AGRR 11.753 0.718 2.727 22.7 200 Pine Creek AGRR 17.753 0.718 2.727 22.7 201	185	Elkhart River	AGRR	3,815	0.470	2,070	16.6
187 Waldron Lake AGRR 16,867 0.334 2,107 13.6 188 Rock Run Creek AGRR 13,049 0.725 3,348 24.0 190 Coldwater Lake AGRR 12,443 0.169 200 2.1 191 Fisher Creek AGRR 12,443 0.169 200 2.1 192 Marble Lake AGRR 12,437 0.077 385 4.4 193 Tallahassee Drain AGRR 18,682 0.444 296 3.7 194 Be Tsauk River AGRR 12,624 0.749 1.099 10.7 195 Mud Creek AGRR 13,043 0.229 309 3.7 197 Coldwater River AGRR 11,351 0.355 1.982 15.1 198 Parine River AGRR 17,753 0.718 2,727 22.7 201 Gourdneck Creek AGRR 7,466 0.341 1.870 14.6 20	186	Solomon Creek	AGRR	8,664	0.222	1,228	10.2
188 Pigeon Creek AGRR 12,398 0.958 8,323 43.0 189 Rock Run Creek AGRR 13,049 0.725 3,348 24.0 190 Coldwater Lake AGRR 12,443 0.169 200 2.1 191 Fisher Creek AGRR 12,367 0.077 385 4.4 193 Tallahassee Drain AGRR 18,682 0.444 296 3.7 194 E Br Sauk River AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 12,642 0.749 1,099 10.7 196 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 17,753 0.718 2.722.7 200 Pine Creek AGRR 12,696 0.300 948 9.2 201 Gourdneck Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River	187	Waldron Lake	AGRR	16,867	0.334	2,107	13.6
189 Rock Run Creek AGRR 13,049 0.725 3,348 24.0 190 Coldwater Lake AGRR 12,443 0.169 200 2.1 191 Fisher Creek AGRR 12,367 0.077 385 4.4 193 Tallahassee Drain AGRR 18,682 0.444 296 3.7 194 Els Sauk River AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 12,642 0.749 1,099 10.7 196 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 12,696 0.300 948 9.2 201 Gourdneck Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 16,999 0.094 277 4.3 205	188	Pigeon Creek	AGRR	12,398	0.958	8,323	43.0
190 Coldwater Lake AGRR 12,443 0.169 200 2.1 191 Fisher Creek AGRR 9,999 0.719 1,146 11.1 192 Marble Lake AGRR 12,367 0.077 385 4.4 193 Tallahassee Drain AGRR 18,682 0.444 296 3.7 194 E Br Sauk River AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 12,642 0.749 1,099 10.7 196 Coldwater River AGRR 11,016 0.361 700 7.1 198 Prairie River AGRR 11,351 0.355 1,982 15.1 199 Rocky River AGRR 12,696 0.300 9.48 9.2 201 Gourdneck Creek AGRR 7,466 0.341 1.870 14.6 204 Rocky River AGRR 16,999 0.094 277 4.3 206	189	Rock Run Creek	AGRR	13,049	0.725	3,348	24.0
191 Fisher Creek AGRR 9.999 0.719 1.146 11.1 192 Marble Lake AGRR 12,367 0.077 385 4.4 193 Tallahassee Drain AGRR 18,682 0.444 296 3.7 194 E Br Sauk River AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 12,642 0.749 1,099 10.7 196 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 14,016 0.361 700 7.1 198 Rocky River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 12,696 0.300 948 9.2 201 Gourdneck Creek AGRR 12,696 0.301 1.47 1.4.6 204 Rocky River AGRR 12,696 0.301 9.448 9.2 202	190	Coldwater Lake	AGRR	12,443	0.169	200	2.1
192 Marble Lake AGRR 12,367 0.077 385 4.4 193 Tallahassee Drain AGRR 18,682 0.444 296 3.7 194 E Br Sauk River AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 12,642 0.749 1,099 10.7 196 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 11,351 0.355 1,982 15.1 198 Rocky River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 12,696 0.300 948 9.2 202 Gourdneck Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 16,999 0.094 2.77 4.3 205 St. Joseph River AGRR 14,866 0.219 500 7.9 206	191	Fisher Creek	AGRR	9,999	0.719	1,146	11.1
193 Tallahassee Drain AGRR 18,682 0.444 296 3.7 194 E Br Sauk River AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 12,642 0.749 1,099 10.7 196 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 12,696 0.300 948 9.2 201 Gourdneck Creek AGRR 8,489 0.372 1,239 11.7 201 Fourdneck Creek AGRR 12,696 0.300 948 9.2 202 Gourdneck Creek AGRR 12,697 0.517 3,383 23.8 203 Flowerfield Creek AGRR 19,589 0.801 1,234 17.3	192	Marble Lake	AGRR	12,367	0.077	385	4.4
194 E Br Sauk River AGRR 10,532 0.147 793 6.5 195 Mud Creek AGRR 12,642 0.749 1,099 10.7 196 Coldwater River AGRR 3,083 0.229 309 3.7 197 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 11,351 0.355 1,982 15.1 199 Rocky River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 12,696 0.300 948 9.2 202 Gourdneck Creek AGRR 7,466 0.341 1,870 14.6 04 Rocky River AGRR 16,999 0.094 277 4.3 205 St. Joseph River AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,866 0.219 500 7.9 210	193	Tallahassee Drain	AGRR	18,682	0.444	296	3.7
195 Mud Creek AGRR 12,642 0.749 1,099 10.7 196 Coldwater River AGRR 3,083 0.229 309 3.7 197 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 11,351 0.355 1,982 15.1 199 Rocky River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 9,706 0.319 2,047 16.5 201 Gourdneck Creek AGRR 12,696 0.300 948 9.2 202 Gourdneck Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 16,999 0.094 277 4.3 206 Trout Creek AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,866 0.249 500 7.9 208	194	E Br Sauk River	AGRR	10,532	0.147	793	6.5
196 Coldwater River AGRR 3,083 0.229 309 3.7 197 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 11,351 0.355 1,982 15.1 199 Rocky River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 9,706 0.319 2,047 16.5 201 Gourdneck Creek AGRR 12,696 0.300 948 9.2 203 Flowerfield Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 16,999 0.094 277 4.3 205 Trout Creek AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,866 0.219 500 7.9 2010	195	Mud Creek	AGRR	12,642	0.749	1,099	10.7
197 Coldwater River AGRR 14,016 0.361 700 7.1 198 Prairie River AGRR 11,351 0.355 1,982 15.1 199 Rocky River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 12,696 0.300 948 9.2 201 Gourdneck Creek AGRR 12,696 0.300 948 9.2 202 Gourdneck Creek AGRR 12,696 0.301 9,133 14.6 204 Rocky River AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 16,999 0.094 277 4.3 206 Trout Creek AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,866 0.219 500 7.3 210 Paw Paw River AGRR 32,180 0.247 1,456 13.5 210	196	Coldwater River	AGRR	3,083	0.229	309	3.7
198 Prairie River AGRR 11,351 0.355 1,982 15.1 199 Rocky River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 9,706 0.319 2,047 16.5 201 Gourdneck Creek AGRR 12,696 0.300 948 9.2 202 Gourdneck Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 27,607 0.517 3,383 23.8 205 St. Joseph River AGRR 16,999 0.094 277 4.3 206 Trout Creek AGR 14,866 0.219 500 7.9 208 Elkhart River AGR 14,517 0.615 2,641 20.1 209 Paw Paw River AGR 16,131 0.130 382 7.3 210 Paw Paw River AGR 12,952 0.329 2,169 17.0 212	197	Coldwater River	AGRR	14,016	0.361	700	7.1
199 Rocky River AGRR 17,753 0.718 2,727 22.7 200 Pine Creek AGRR 9,706 0.319 2,047 16.5 201 Gourdneck Creek AGR 12,696 0.300 948 9.2 202 Gourdneck Creek AGR 8,489 0.372 1,239 11.7 203 Flowerfield Creek AGR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 12,607 0.517 3,383 23.8 205 St. Joseph River AGRR 19,599 0.094 277 4.3 206 Trout Creek AGR 14,517 0.615 2,641 20.1 207 St. Joseph River AGRR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 16,131 0.130 382 7.3 210 Paw Paw River AGRR 12,952 0.329 2,169 17.0 <td< td=""><td>198</td><td>Prairie River</td><td>AGRR</td><td>11,351</td><td>0.355</td><td>1,982</td><td>15.1</td></td<>	198	Prairie River	AGRR	11,351	0.355	1,982	15.1
200 Pine Creek AGRR 9,706 0.319 2,047 16.5 201 Gourdneck Creek AGRR 12,696 0.300 948 9.2 202 Gourdneck Creek AGRR 8,489 0.372 1,239 11.7 203 Flowerfield Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 16,999 0.094 277 4.3 205 St. Joseph River AGRR 19,589 0.801 1,234 17.3 206 Trout Creek AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 <t< td=""><td>199</td><td>Rocky River</td><td>AGRR</td><td>17.753</td><td>0.718</td><td>2.727</td><td>22.7</td></t<>	199	Rocky River	AGRR	17.753	0.718	2.727	22.7
201 Gourdneck Creek AGRR 12,696 0.300 948 9.2 202 Gourdneck Creek AGRR 8,489 0.372 1,239 11.7 203 Flowerfield Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 27,607 0.517 3,383 23.8 205 St. Joseph River AGRR 16,999 0.094 277 4.3 206 Trout Creek AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGRR 12,180 0.247 1,456 13.5 212 Big Meadow Drain AGRR 12,952 0.329 2,169 17.0	200	Pine Creek	AGRR	9,706	0.319	2,047	16.5
202 Gourdneck Creek AGRR 8,489 0.372 1,239 11.7 203 Flowerfield Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 27,607 0.517 3,383 23.8 205 St. Joseph River AGRR 16,999 0.094 277 4.3 206 Trout Creek AGRR 19,589 0.801 1,234 17.3 207 St. Joseph River AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 16,131 0.130 382 7.3 210 Paw Paw River AGRR 16,131 0.130 382 7.3 212 Big Meadow Drain AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,928 0.299 1,881 15.3	201	Gourdneck Creek	AGRR	12.696	0.300	948	9.2
203 Flowerfield Creek AGRR 7,466 0.341 1,870 14.6 204 Rocky River AGRR 27,607 0.517 3,383 23.8 205 St. Joseph River AGRR 16,999 0.094 277 4.3 206 Trout Creek AGRR 19,589 0.801 1,234 17.3 207 St. Joseph River AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,817 0.615 2,641 20.1 209 Paw Paw River AGRR 16,131 0.130 382 7.3 210 Paw Paw River AGRR 32,180 0.247 1,456 13.5 212 Big Meadow Drain AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,928 0.299 1,881 15.3 212 Big Meadow Drain AGRR 18,928 0.299 1,881 15.3 <t< td=""><td>202</td><td>Gourdneck Creek</td><td>AGRR</td><td>8,489</td><td>0.372</td><td>1,239</td><td>11.7</td></t<>	202	Gourdneck Creek	AGRR	8,489	0.372	1,239	11.7
204 Rocky River AGRR 27,607 0.517 3,383 23.8 205 St. Joseph River AGRR 16,999 0.094 277 4.3 206 Trout Creek AGR 19,589 0.801 1,234 17.3 207 St. Joseph River AGR 14,866 0.219 500 7.9 208 Elkhart River AGR 14,866 0.219 500 7.9 208 Elkhart River AGR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGR 32,180 0.247 1,456 13.5 212 Big Meadow Drain AGR 9,897 0.445 1,682 13.3 213 S Br Hog Creek AGR 18,005 0.427 1,650 13.9 215 Pine Creek AGR 18,928 0.299 1,881 15.3 216 <td>203</td> <td>Flowerfield Creek</td> <td>AGRR</td> <td>7,466</td> <td>0.341</td> <td>1,870</td> <td>14.6</td>	203	Flowerfield Creek	AGRR	7,466	0.341	1,870	14.6
205 St. Joseph River AGRR 16,999 0.094 277 4.3 206 Trout Creek AGRR 19,589 0.801 1,234 17.3 207 St. Joseph River AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 20,796 0.092 481 9.8 210 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGRR 32,180 0.247 1,456 13.5 212 Big Meadow Drain AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217	204	Rocky River	AGRR	27,607	0.517	3,383	23.8
206 Trout Creek AGRR 19,589 0.801 1,234 17.3 207 St. Joseph River AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 20,796 0.092 481 9.8 210 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGRR 32,180 0.247 1.456 13.5 212 Big Meadow Drain AGRR 9,897 0.445 1,682 13.3 213 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5	205	St. Joseph River	AGRR	16,999	0.094	277	4.3
207 St. Joseph River AGRR 14,866 0.219 500 7.9 208 Elkhart River AGRR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 20,796 0.092 481 9.8 210 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGRR 32,180 0.247 1,456 13.5 212 Big Meadow Drain AGRR 9,897 0.445 1,682 13.3 213 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 15,304 0.505 944 8.5 219 </td <td>206</td> <td>Trout Creek</td> <td>AGRR</td> <td>19,589</td> <td>0.801</td> <td>1,234</td> <td>17.3</td>	206	Trout Creek	AGRR	19,589	0.801	1,234	17.3
208 Elkhart River AGRR 14,517 0.615 2,641 20.1 209 Paw Paw River AGRR 20,796 0.092 481 9.8 210 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGRR 32,180 0.247 1,456 13.5 212 Big Meadow Drain AGRR 9,897 0.445 1,682 13.3 213 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 15,991 0.683 3,076 22.6 22	207	St. Joseph River	AGRR	14,866	0.219	500	7.9
209 Paw Paw River AGRR 20,796 0.092 481 9.8 210 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGRR 32,180 0.247 1,456 13.5 212 Big Meadow Drain AGRR 9,897 0.445 1,682 13.3 213 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 15,991 0.683 3,076 22.6 <t< td=""><td>208</td><td>Elkhart River</td><td>AGRR</td><td>14,517</td><td>0.615</td><td>2,641</td><td>20.1</td></t<>	208	Elkhart River	AGRR	14,517	0.615	2,641	20.1
210 Paw Paw River AGRR 16,131 0.130 382 7.3 211 Hickory Creek AGRR 32,180 0.247 1,456 13.5 212 Big Meadow Drain AGRR 9,897 0.445 1,682 13.3 213 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 15,991 0.683 3,076 22.6	209	Paw Paw River	AGRR	20,796	0.092	481	9.8
211 Hickory Creek AGRR 32,180 0.247 1,456 13.5 212 Big Meadow Drain AGRR 9,897 0.445 1,682 13.3 213 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.434 2,720 19.4	210	Paw Paw River	AGRR	16,131	0.130	382	7.3
212 Big Meadow Drain AGRR 9,897 0.445 1,682 13.3 213 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 <	211	Hickory Creek	AGRR	32,180	0.247	1,456	13.5
213 S Br Hog Creek AGRR 12,952 0.329 2,169 17.0 214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.433 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 13,910 0.045 192 7.4 226	212	Big Meadow Drain	AGRR	9,897	0.445	1,682	13.3
214 S Br Hog Creek AGRR 18,005 0.427 1,650 13.9 215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 13,910 0.045 192 7.4 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226	213	S Br Hog Creek	AGRR	12,952	0.329	2,169	17.0
215 Pine Creek AGRR 18,928 0.299 1,881 15.3 216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.453 1,964 15.8 222 Turkey Creek AGRR 11,543 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 <td>214</td> <td>S Br Hog Creek</td> <td>AGRR</td> <td>18,005</td> <td>0.427</td> <td>1,650</td> <td>13.9</td>	214	S Br Hog Creek	AGRR	18,005	0.427	1,650	13.9
216 Emma Lake PAST 8,835 0.003 680 5.0 217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.453 1,964 15.8 222 Turkey Creek AGRR 11,543 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227<	215	Pine Creek	AGRR	18,928	0.299	1,881	15.3
217 Pigeon Creek AGRR 10,253 0.472 858 7.9 218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.453 1,964 15.8 222 Turkey Creek AGRR 11,543 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4	216	Emma Lake	PAST	8,835	0.003	680	5.0
218 Tamarack Lake Outlet AGRR 15,304 0.505 944 8.5 219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.453 1,964 15.8 222 Turkey Creek AGRR 11,543 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9	217	Pigeon Creek	AGRR	10,253	0.472	858	7.9
219 St. Joseph River AGRR 8,298 1.029 1,376 12.5 220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.453 1,964 15.8 222 Turkey Creek AGRR 11,543 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	218	Tamarack Lake Outlet	AGRR	15,304	0.505	944	8.5
220 Yellow Creek AGRR 15,991 0.683 3,076 22.6 221 Elkhart River AGRR 13,718 0.453 1,964 15.8 222 Turkey Creek AGRR 11,543 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	219	St. Joseph River	AGRR	8,298	1.029	1,376	12.5
221 Elkhart River AGRR 13,718 0.453 1,964 15.8 222 Turkey Creek AGRR 11,543 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	220	Yellow Creek	AGRR	15,991	0.683	3.076	22.6
222 Turkey Creek AGRR 11,543 0.434 2,720 19.4 223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	221	Elkhart River	AGRR	13,718	0.453	1,964	15.8
223 Solomon Creek AGRR 15,408 0.078 689 7.4 224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	222	Turkey Creek	AGRR	11,543	0.434	2,720	19.4
224 Pigeon Creek AGRR 10,619 0.993 4,570 30.5 225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	223	Solomon Creek	AGRR	15,408	0.078	689	7.4
225 Pigeon Creek AGRR 13,910 0.045 192 7.4 226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	224	Pigeon Creek	AGRR	10.619	0.993	4,570	30.5
226 N Br Paw Paw River FRSD 18,618 0.001 1 2.3 227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	225	Pigeon Creek	AGRR	13,910	0.045	192	7.4
227 Pipestone Creek PAST 24,022 0.008 3,552 15.4 228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	226	N Br Paw Paw River	FRSD	18,618	0.001	1	2.3
228 Mudd Lake Exit Drain AGRR 8,674 0.361 487 9.9 229 St. Joseph River AGRR 12,559 0.123 566 8.8	227	Pipestone Creek	PAST	24,022	0.008	3,552	15.4
229 St. Joseph River AGRR 12,559 0.123 566 8.8	228	Mudd Lake Exit Drain	AGRR	8,674	0.361	487	9.9
	229	St. Joseph River	AGRR	12,559	0.123	566	8.8

Table A: SWAT annual subwatershed loadings (annual average 2000-2004) (Continued).

† Subwatershed number (see Figures 3-5).
 ‡ Landuse types: AGRR: (Agricultural) Row Crop; FRSD: Deciduous Forest; URLD: (Urban) Low Density Residential; PAST: Pasture.
appendix g

empirical sediment and phosphorous nonpoint source model for the st. joseph river watershed

EMPIRICAL SEDIMENT AND PHOSPHORUS NONPOINT SOURCE MODEL FOR THE ST. JOSEPH RIVER WATERSHED

Prepared for:

A Section 319 Watershed Management Planning Grant

Prepared by:

KIESER & ASSOCIATES

September 5, 2003

1.0 Executive Summary

An empirical nonpoint source (NPS) modeling effort of the St. Joseph River Watershed was conducted using loading data calculated near the mouth of the river to estimate NPS loads of phosphorus and sediment from recognized subwatersheds draining to Lake Michigan. Monitoring data were collected by the U.S. Geological Survey (USGS) as a part of the National Stream Quality Assessment Network, and published in a 1997 study on loading of phosphorus and sediment to Lakes Michigan and Superior from major tributaries (Robertson, 1997). This modeling assessment was undertaken to estimate the spatial origin of NPS phosphorus and sediment loads for the development of a Watershed Management Plan. Modeling targeted compilation and utilization of a consistent set of relevant watershed attributes and climatic variables.

NPS modeling in this application used a combination of empirical tools, published literature values for pollutant runoff concentrations and a geographic information system database. The approach integrates: a) high resolution land cover data for the watershed; b) estimated mean concentrations (EMCs) of pollutants in runoff; c) 30-meter resolution digital elevation data, and; d) interpolated rainfall data from existing weather stations to produce a consistent spatial dataset for the entire watershed. Annual sediment and phosphorus loads are calculated for each subwatershed using event mean concentrations, land cover relationships and precipitation data. Published loading data and point source discharge information were used to adjust NPS loading model coefficients.

This NPS modeling effort serves as an initial step to identify critical areas in the St. Joseph Watershed related to common, yet important, pollutants which influence water quality. Critical area identification will lead to prioritization of improvement and protection strategies within the watershed and the recommendations of Best Management Practices (BMPs) to reduce NPS pollution.

The St. Joseph River NPS loading model yielded an estimated load of 288 tons of phosphorus and 134,000 tons of sediment annually associated with runoff from precipitation. The model results were utilized to compare loading among subwatersheds.

The distribution of land cover throughout the watershed, and the corresponding NPS loads derived from this modeling effort, provide important insight into the most significant contributors of sediment and phosphorus to the river. Analyses indicate that 86% and 70% of the NPS sediment and phosphorus loads, respectively, appear attributable to agricultural land covers that comprise 70% of the total land use in the watershed. In highly urbanized reaches of the watershed (which constitute only 1% of the total land use in the watershed), urban stormwater contributions are the dominant contributor of pollutants.

The value of this NPS modeling effort for the St. Joseph River Watershed Management Plan is several fold. Beneficial outcomes of this approach include:

- A contiguous land use/land cover data set for the 1990s.
- Consistent land cover interpretation and breakdown of land uses for the entire watershed and subwatershed areas.
- Distribution of NPS loads by land use and by subwatershed.
- Regional understanding of NPS loads.
- Comprehensive GIS coverage of physical attributes, including soils, slope, elevation and precipitation, that allows for examination of critical watershed areas and attributes.
- Valuable information for future educational use to engage participants and establish new partnerships.

2.0 Introduction

Page 3

This report presents the results of a NPS modeling analysis that estimates sediment and phosphorus loads from subwatersheds of the St. Joseph River Watershed. This effort was completed by KIESER & ASSOCIATES (K&A) as part of a Clean Water Act Section 319 grant administered by the Michigan Department of Environmental Quality (MDEQ) to the Friends of the St. Joe River Association, Inc. The purpose of the grant is to prepare a Watershed Management Plan for the St. Joseph River Watershed.

The St. Joseph River Watershed drains fifteen counties in Southwestern Michigan and Northeastern Indiana. Its headwaters originate in Hillsdale County, Michigan. The river flows west to Three Rivers, Michigan and then southwest past Elkhart, Mishawaka and South Bend, Indiana. The river then flows northwest past Niles, Michigan and discharges to Lake Michigan at St. Joseph/Benton Harbor, Michigan. The watershed covers 4,685 square miles of largely agricultural land (over 70% of the land cover). According to the 2000 U.S. Census, approximately 1.5 million people live in the 15 counties of the watershed. The most populated county is St. Joseph County, Indiana, where South Bend and Mishawaka are located. The second most populated county is Kalamazoo County, Michigan.

A 2000 Michigan Department of Natural Resources (MDNR) assessment of the St. Joseph River Watershed lists 63 water bodies which do not meet designated uses, based on 1996 Indiana Department of Environmental Management (IDEM) and MDEQ reports. Several water bodies (or stream segments) are listed for multiple stressors. *E. coli* is listed most with 29 water bodies. Twenty-two are impaired by biological degradation, and fifteen are impaired by sedimentation. Two TMDLs are currently being developed for *E. coli*.

The MDEQ 2002 Water Body System Nonattainment survey indicates that fish consumption advisories were issued in 10 water bodies; 1 did not meet the cold water fisheries designated use; 1 was listed for macroinvertebrate communities being rated poor; and 2 were impaired for body contact.

Annual sediment and phosphorus loads to Lake Michigan from the entire St. Joseph River were previously estimated by the U.S. Geological Survey based upon available 1970-1993 concentration and flow data measured at Niles, Michigan (Roberston, 1997). These estimates included all sources of phosphorus and sediments to the river, including permitted point sources (municipal and industrial wastewater) and nonpoint sources (runoff from all land uses plus in-stream erosion processes). Loading of these parameters from regulated point sources was averaged over a 10-year period (1990-1999) and subtracted from the total measured loads from the river. The resulting load was attributed to nonpoint sources (NPS) and utilized to calibrate the model. NPS loads accounted for 98% and 75% of the total loads of sediment and phosphorus, respectively, from the St. Joseph River to Lake Michigan.

Results of this non-point source modeling analysis are provided in the following sections of this report:

- Methods
- Watershed Characterization
- Non-point Source Sediment and Phosphorus Loading
- Conclusions/Recommendations

Information in these sections is supplemented with technical details provided in appendices.

3.0 Methods

Brief descriptions of the methods and datasets used in the St. Joseph River Watershed NPS loading model are provided in this report section. A detailed description of the data preparation steps completed for this modeling effort is included in Appendix A. Calculation methods for storm water runoff and NPS sediment and phosphorus loads and model calibration are presented in Appendix B.

3.1 Subwatershed Boundaries

Existing subwatershed boundaries available from the Michigan Center for Geographic Information were preliminarily used in the Section 319 planning project. However, these boundaries left large subwatersheds in Indiana, including the Pigeon River and Elkhart River Watersheds undelineated. Watershed boundaries for the Indiana portion of the watershed that contain fine-scale delineations of the Pigeon River and Elkhart River Watersheds are available from the USGS. However, this delineation only covers the Indiana portion of the St. Joseph River Watershed. Therefore, digital elevation modeling was conducted to create a single, continuous subwatershed layer across the watershed. The subwatershed boundaries from the MDEQ and USGS were utilized to name the delineated subwatersheds and to assure that any newly delineated subwatersheds were not included in the final product. It was the purpose of the final delineation to only map federally recognized subwatersheds in a single layer.

Figure 1 illustrates the subwatersheds of the St. Joseph River watershed delineated by the MDEQ. Figure 2 illustrates the Indiana subwatersheds available from the USGS. Figure 3 illustrates the final subwatershed delineation. Subwatersheds are numbered, corresponding to the subwatershed designations (or Acodes@) in Table 1.

The final subwatershed delineation for the St. Joseph River Watershed was completed using 30meter resolution Digital Elevation Model (DEM) topographic information. This approach provided the continuous representation of elevation for the entire area of study as shown in Figure 4. Flow direction, flow accumulation, and finally the subwatershed boundaries for the entire watershed were determined from this fine resolution data. The resulting boundaries delineated with the DEM data aligned well with the existing MDEQ and USGS subwatershed boundaries. However, twelve subwatersheds were delineated in addition to those recognized on the MDEQ and USGS layers. These additional subwatersheds were combined with their appropriate adjacent subwatersheds so that no unrecognized subwatersheds were utilized in the model. Differences in the placement of watershed boundaries were noted among the delineated subwatersheds and the layers available from the MDEQ and USGS. This is presumably due to differences in the resolution of the elevation data utilized for the delineations. The subwatershed delineation conducted by Kieser & Associates was utilized for the NPS model. (See Appendix A for additional details.)

3.2 Land Use/Land Cover

Land use/land cover data for the St. Joseph River Watershed was obtained from the USGS National Land Cover Dataset. These data layers are available as grid files from the Michigan Center for Geographic Information by Michigan counties and from the Indiana Geological Survey (Indiana GIS Atlas) for the entire state of Indiana. The eight Michigan county land cover files were Amosaiced@ together to create one continuous file for the Michigan portion of the watershed. These data layers were provided in the Michigan Georef projection. The Indiana land use layer was provided in the Universal Transverse Mercator (UTM) projection. The Amosaiced@ Michigan layer was reprojected to the UTM projection and then Amosaiced@ with the Indiana layer. The resulting land cover data file was then clipped by the watershed boundaries.

The clipped land cover file was utilized to calculate the areas of each land cover type in each subwatershed and in the St. Joseph River Watershed as a whole. This land cover information was then utilized in the NPS model. Figure 5 represents the land cover layer.

3.3 Precipitation Data

Annual precipitation values were collected from 15 weather stations located within Michigan and Indiana spanning a time period of January 1949 to December 1999 as a part of an NPS modeling effort conducted by Kieser & Associates for the Kalamazoo River Watershed. (The Kalamazoo River Watershed is located adjacent to the St. Joseph River Watershed to the north. Therefore, the weather stations accessed for that study overlapped the geographic area of the St. Joseph River Watershed.) A continuous grid of precipitation values was created using Akriging[®], a widely used method of spatial interpolation.

Figure 6 presents the average annual precipitation grid. The interpolated precipitation values within each subwatershed were then averaged to provide a single precipitation value for that subwatershed representative of annual weather patterns.

3.4 Storm Water Runoff

Runoff in the St. Joseph River Watershed NPS model was determined using the approach prescribed in the State of Michigan Part 30 - Water Quality Trading Rules (MI-ORR, 2002). This approach uses fractions of impervious surface based on land use/land cover, areas of different land use/land cover types, and precipitation to generate runoff. Details of this approach are provided in Appendix B.

3.5 Sediment and Phosphorus Loads

Nonpoint source sediment and phosphorus loading to Lake Michigan from the St. Joseph River was determined using the event mean concentration (EMC) approach. In this approach (also prescribed by the Part 30 - Water Quality Trading Rules), sediment and phosphorus loads are calculated from

runoff volumes corresponding to annual precipitation depths and pollutant concentrations assigned to each land use/land cover category in each subwatershed. The EMCs used for this characterization are based on those determined from storm water pollutant monitoring conducted during the Nationwide Urban Runoff Program for the Rouge River, Michigan Watershed (as seen in Wayne County, 1998). Average annual sediment and phosphorus loads predicted with the NPS model are presented in Figures 7 and 8, respectively. Loading from each subwatershed is depicted in units of pounds/acre/year to portray the relative loadings among subwatersheds. Appendix B presents a detailed discussion of how these loads were computed.

4.0 Watershed Characterization

This section provides a summary of the information compiled for the land use/land cover. Based on the land cover data obtained from the USGS National Land Cover Dataset, the approximately 3 million acres of the St. Joseph River Watershed are comprised of 17% forest and open areas, 71% agriculture, 3% residential, 1% commercial, industrial and transportation, and 8% open water and wetlands. Table 1 summarizes these land cover types by subwatershed. The urban centers of St. Joseph/Benton Harbor, MI and South Bend, Mishawaka and Elkhart, IN are evident as large clusters of residential, commercial, industrial and transportation related land covers (Figure 5). The remainder of the watershed is primarily agricultural in Indiana and a patchwork of agriculture, forests/open areas, open water and wetlands in Michigan.

The topography of the St. Joseph River Watershed, derived from the 30-meter DEM, is displayed in Figure 4. The region is characterized by gently rolling surfaces resulting from glacial moraines. Elevations range from approximately 180 meters above sea level to just over 380 meters. The highest elevations are observed in Hillsdale County, Michigan in the easternmost portion of the watershed.

Figures 9 to 12 illustrate the percent distribution of land cover types by subwatershed. Figure 9 shows that agricultural lands are typically more prevalent in the southwestern and south-central portions of the watershed. Subwatersheds 206 and 213, both subwatersheds of Turkey Creek (part of the Elkhart River Subwatershed) exhibit the highest percentage of agricultural lands at 95% and greater.

Forested and open areas by subwatershed are displayed in Figure 10. Areas with a greater percentage of these land covers tend to be found in the northern-central portions of the St. Joseph River Watershed. Subwatersheds 2 (North Branch Paw Paw River, located north of Watervliet, MI) and 89 (Mill Creek, located west of Three Rivers, MI) contain the greatest percentage of forest and open land covers at 45% and 36%, respectively.

Wetlands and open water by subwatershed are depicted in Figure 11. Subwatersheds 12 (Gourdneck Creek, located south of Portage, MI), 205 (Turkey Creek at Wawasee Lake) and 51 (Dowagiac Creek), each exhibit over 25% water and wetland areas. Subwatershed 51 contains 7 lakes including Fish Lake, Finch Lake, Saddlebag Lake and Bunker Lake.

Figure 12 displays percent urbanized land cover by subwatershed. Urban areas include residential, commercial, industrial and transportation land covers. The subwatersheds overlapping St. Joseph/Benton Harbor, MI and Mishawaka-South Bend, IN exhibit the highest percentages of these land cover types. Subwatersheds overlapping Goshen and Elkart, IN and Niles, MI also have notably higher urban land covers relative to other subwatersheds. The most intensive urban land uses are adjacent to the St. Joseph River at its middle and downstream sections.

The range and distribution of land slopes in the watershed are illustrated in Figure 13. The steepest areas of the watershed are often observed along the banks of the St. Joseph River floodplain. The ability to locate these steeper areas in combination with other land cover information such as agriculture, begins to illustrate the types of useful analyses that can be completed with these GIS data. This approach thus offers the capability to identify watershed areas where non-point source loadings may be greatest.

5.0 Nonpoint Source Sediment and Phosphorus Loading

The St. Joseph River NPS sediment and phosphorus loading model was calibrated to predict loads of 135,000 and 290 tons, respectively, on an annual basis. NPS sediment and phosphorus loading predictions for each subwatershed are presented in Table 1 and Figures 7 (sediment loads) and 8 (phosphorus loads).

Table 1 indicates that NPS sediment and phosphorus loads from the St. Joseph River Watershed-s 217 identified subwatersheds are primarily from the western end of the watershed. This might suggest that NPS loading is driven by rainfall depths, as the western end of the watershed averages an annual rainfall depth of 36 inches, driven by the effects of Lake Michigan. Conversely, the eastern end of the watershed averages an annual precipitation depth of 30 inches. However, when one examines Figures 7 and 8, it is evident that a NPS strategy with a focus on geographic areas may yield the best opportunities for significant reductions. Clustered drainage areas surrounding the large urban areas of St. Joseph/Benton Harbor, MI and South Bend, IN, for example, suggest that targeted efforts in these areas may be useful for reducing NPS loading. Of interest, in the central portion of the watershed where precipitation depths are moderate, is Subwatershed 121 (Nye Drain) which stands out as an area of high nonpoint source loading compared to the surrounding subwatersheds. This subwatershed overlaps the urban area of Sturgis, MI and is adjoined by subwatersheds exhibiting higher percentages of forested and wetland land covers.

This is not to suggest that watershed improvement efforts in other sections of the watershed do not merit attention, rather watershed management efforts focused on sediment and phosphorus loading may be better served by implementing Best Management Practices (BMPs) in urban areas where investments potentially yield higher returns in terms of loading reductions to the river. Stormwater management efforts in these areas may also yield reductions in pathogen loading to the river, which has been identified as a priority. Pesticide loading to the river has also been identified as a concern. Agricultural areas, comprising 71% of the watershed, are expected to be the largest contributor of pesticides, such as atrazine. However, pesticide use in residential areas has been noted to occur at a high rate, as homeowners tend to over apply these products and are not trained to apply the appropriate levels. Urban watershed education and stormwater management techniques must be an integral component of the Watershed Management Plan.

It is valuable to note that forests, open areas and water/wetlands cover almost one-quarter of the land area in the watershed while representing only about 7% and17% of the sediment and phosphorus loads, respectively. Although this ratio of land cover to load reflects a relatively small contributing proportion of the overall load, these loads can be viewed as the Anatural background@ contributions associated with relatively undisturbed conditions. As such, there will be few opportunities or techniques to reduce NPS contributions from these background sources. Protection, and/or conservation development practices should therefore be promoted as an integral element of the Watershed Management Plan in these areas.

6.0 Conclusions/Recommendations

The NPS modeling effort described herein, provides a first-cut analysis of the relative NPS loads stemming from various land uses/land covers of the St. Joseph River Watershed. The modeling approach used in this effort offers a variety of valuable tools and results previously not utilized in the St. Joseph River Watershed as a whole. Such valuable attributes include:

- \$ Land use distributions by subwatershed and for the overall St. Joseph River Watershed.
- Land cover data for the entire watershed derived from a single source (USGS National Land Cover Data Set) and Amosaiced@ into a single raster file.
- \$ Fine scale resolution of subwatershed characteristics including land use, elevations and other applicable data compiled in a GIS format.
- \$ Use of rainfall patterns that vary dramatically across the watershed, derived from the NPS modeling efforts for the Kalamazoo River Watershed, to the north of the St. Joseph River Watershed.
- \$ Annual NPS sediment and phosphorus loading estimates from subwatersheds to identify those areas of the watershed most contributing to the NPS load.
- \$ Estimated NPS loads by land use categories within each subwatershed allowing for identification of land uses and locations where BMPs should be implemented.
- \$ An NPS modeling approach that offers a relatively simple, yet reasonable method to estimate annual sediment and phosphorus loads in a manner consistent with the State of Michigan Water Quality Trading Rules.
- \$ Mapping of sensitive and/or critical watershed areas where protection or restoration may provide the greatest long-term benefits to protect water quality.
- \$ A valuable tool to integrate with other known characteristics of the watershed to identify critical areas and direct implementation efforts to lead to overall watershed health.

The scope of this modeling effort was not intended to provide a comprehensive analysis that would result in recommendations for specific NPS loading reductions. Rather, it was to serve as one tool to be used in the watershed management planning process. The model does not account for specific Aon-the-ground@ practices which may impact (positively or negatively) water quality. It simply utilizes land cover and precipitation data to predict NPS loading from each subwatershed of the St. Joseph River Watershed to Lake Michigan.

The model also does not account for sediment transport and deposition nor phosphorus uptake within the St. Joseph River and its tributaries. Therefore, it is meant to be capture the loading from land surfaces of each subwatershed to surface waters in the watershed. The model was calibrated to measured concentrations of total phosphorus and total suspended solids. These data incorporate wet weather loads to the St. Joseph River and dry weather baseline conditions. The NPS model was calibrated to these total loads using EMC=s, which are estimates of concentrations of pollutants in wet weather runoff. Therefore, wet weather estimates were utilized to calibrate the NPS loading model to both dry and wet weather loads in the river. However, it is beyond the scope of this

KIESER & ASSOCIATES

modeling effort to segregate wet and dry weather conditions. Nevertheless, the NPS model is valid for comparing subwatersheds and identifying potential areas of high loading. With these caveats in mind, the model is utilized as one tool in the process of the development of the Watershed Management Plan for the St. Joseph River Watershed.

7.0 References

- Kieser & Associates. 2001. Non-point Source Modeling of Phosphorus Loads in the Kalamazoo River/Lake Allegan Watershed for a Total Maximum Daily Load. Prepared for Kalamazoo Conservation District.
- State of Michigan Office of Regulatory Reform (MI-ORR). 2002. Part 30- Water Quality Trading Rules. http://www.state.mi.us/orr/emi/arcrules.asp?type=Numeric&id=1999&subID= 1999-036+EQ&subCat=Admincode.
- Robertson, Dale M. 1997. Regionalized Loads of Sediment and Phosphorus to Lakes Michigan and Superior: High Flow and Long-term Average. J. Great Lakes Res 23(4):416-439.
- Wayne County Rouge River National Wet Weather Demonstration Project (Wayne County). 1998. AUrban Storm Water Quantification Protocols: Working Draft.[@] Prepared for the Water Quality Trading Workgroup.

TABLE 1

Land Use and NPS Loading for Each Delineated Subwatershed

Watershed	Water	W	ater +	F	orest +	Agi	riculture	Residential	Commercial +	Urban	Total Acres	TP	TSS
Number	Course	w	etland	Op	en Land	_			Industrial			Load	Load
			percent of		percent of		percent of			percent of			
		acres	subwatershed	acres	subwatershed	acres	subwatershed	acres	acres	subwatershed		pounds/acres	pounds/acre
1	Brandywine Creek	1556.06	7.81	4544.76	22.81	13715.24	68.75	92.29	11.79	0.46	20019.50	0.179	89.8
2	N Br Paw Paw River	2047.77	11.01	8351.63	44.89	7940.21	42.58	230.84	22.24	1.24	18691.18	0.151	65.5
3	N Br Paw Paw River	1202.91	6.63	6056.12	33.35	10742.10	59.04	137.44	16.01	0.75	18253.60	0.162	80.3
4	Mud Lake Drain	975.18	9.93	2152.29	21.89	6648.79	67.47	45.37	1.56	0.46	9922.47	0.193	93.6
5	Paw Paw River	2458.52	14.40	4205.17	24.61	10365.82	60.59	38.25	1.78	0.22	17169.15	0.184	83.1
6	Paw Paw Lake	1471.78	16.39	2637.99	29.33	4391.98	48.67	468.35	8.67	5.16	9073.16	0.215	81.7
7	Portage River	2283.50	11.39	3598.27	17.94	14010.13	69.80	142.55	6.89	0.71	20140.48	0.175	83.2
8	Paw Paw River	1641.02	9.24	4613.04	25.96	11085.70	62.31	271.76	145.89	1.52	17854.91	0.196	91.4
9	Nottawa Creek	2457.41	9.98	5987.85	24.32	16059.23	65.16	55.60	52.26	0.22	24711.81	0.156	75.5
10	Paw Paw River	1214.47	12.24	1938.13	19.51	5625.80	56.52	906.68	237.29	9.06	10010.64	0.270	102.4
11	Gourdneck Creek	1734.86	20.50	1617.66	19.07	4451.58	52.35	580.88	79.17	6.79	8556.07	0.221	78.9
12	Gourdneck Creek	3621.84	28.55	2254.37	17.73	6187.78	48.59	572.65	50.70	4.48	12782.22	0.211	70.1
13	E Br Paw Paw River	1083.48	4.97	7409.81	33.99	12696.91	58.16	378.51	224.84	1.73	21890.67	0.171	82.7
14	Paw Paw River	1148.42	9.59	1958.81	16.35	8430.58	70.26	273.98	161.90	2.27	12069.89	0.224	103.4
15	Nottawa Creek	1197.57	7.56	3536.22	22.32	11017.65	69.43	12.01	74.72	0.08	15937.48	0.156	78.7
16	Pine Creek	968.06	9.99	2940.44	30.32	5761.46	59.22	15.79	3.11	0.16	9788.39	0.152	72.9
17	Eagle Lake Drain	822.84	8.08	1709.29	16.77	7621.97	74.65	28.91	2.67	0.28	10285.18	0.190	96.4
18	Alder Creek	954.94	9.28	3287.59	31.92	6039.89	58.46	8.01	0.00	0.08	10390.09	0.144	69.8
19	Portage River	2738.29	14.15	3719.92	19.21	12682.23	65.43	194.81	13.57	1.00	19447.62	0.177	79.7
20	S Br Paw Paw River	192.81	1.45	4098.20	30.85	8743.71	65.68	169.24	76.72	1.26	13378.67	0.168	89.0
21	Pine Creek	2466.31	13.07	4220.74	22.34	12161.84	64.31	26.02	2.22	0.14	18976.84	0.166	77.0
22	St. Joseph River	115.64	4.93	670.73	28.51	1527.60	64.16	31.36	2.22	1.28	2445.14	0.151	76.6
23	Little Portage Creek	801.72	4.46	3342.08	18.59	13713.90	76.20	105.86	10.90	0.59	18073.70	0.166	88.1
24	Mill Creek	700.08	3.77	2793.66	15.06	14849.43	79.98	108.75	95.18	0.58	18645.92	0.207	109.9
25	Brush Creek	2669.12	9.97	5519.05	20.61	18341.17	68.45	131.21	102.30	0.49	26861.90	0.195	94.2
26	Paw Paw River	1288.53	6.20	5333.13	25.64	13374.98	64.23	535.52	260.42	2.56	20888.64	0.214	100.9
27	St. Joseph River	1329.00	8.14	3530.44	21.61	11238.26	68.70	138.55	93.40	0.84	16428.10	0.161	78.8
28	St. Joseph River	1968.15	18.94	1439.09	13.83	6805.13	65.29	145.89	31.58	1.39	10487.90	0.178	74.9
29	Portage Creek	3076.10	17.67	2031.31	11.66	11456.87	65.72	718.76	121.65	4.11	17499.73	0.211	85.7
30	Portage River	390.29	12.66	261.09	8.44	2430.50	78.31	0.67	0.00	0.02	3181.96	0.186	90.1
31	Flowerfield Creek	892.67	8.67	1143.31	11.09	8041.62	77.94	173.46	47.37	1.67	10396.13	0.196	95.7
32	Paw Paw River	983.19	6.11	3355.42	20.84	6234.93	38.67	4166.48	1355.24	25.78	16160.87	0.408	124.6
33	Flowerfield Creek	2070.67	13.12	2500.11	15.83	11149.08	70.53	57.60	0.89	0.36	15877.83	0.186	87.3
34	Bear Creek	821.51	7.13	2717.16	23.57	7978.69	69.06	4.89	0.00	0.04	11622.01	0.160	82.0
35	Tekonsha Creek	855.76	6.16	3443.49	24.78	9570.11	68.75	4.23	16.23	0.03	13989.50	0.149	77.0
36	St. Joseph River	1144.86	19.19	948.27	15.84	740.56	12.34	2727.61	404.75	45.36	6013.43	0.513	112.1
37	St. Joseph River	688.52	21.25	393.41	12.07	1876.75	57.35	248.85	31.80	7.47	3330.00	0.218	78.3
38	Nottawa Creek	1486.68	8.95	3235.55	19.46	11744.42	70.55	134.55	18.46	0.80	16718.60	0.167	82.2
39	St. Joseph River	432.33	3.54	2269.93	18.58	9411.99	76.90	72.28	30.25	0.59	12315.79	0.161	85.9
40	Bear Creek	1055.46	8.30	2406.93	18.92	9250.76	72.61	0.44	0.00	0.00	12813.42	0.166	84.0
41	Flowerfield Creek	127.43	3.98	775.47	24.17	2134.94	66.04	164.57	2.22	4.99	3298.83	0.184	87.3
42	Dowagiac River	1020.99	3.11	6957.25	21.16	24523.61	74.54	309.57	63.16	0.94	32973.39	0.183	97.3
43	Hog Creek	1022.33	7.19	2396.47	16.85	10740.77	75.42	15.12	42.70	0.11	14316.85	0.162	83.0
44	Flowerfield creek	1053.46	14.10	1019.88	13.62	5271.75	70.28	68.94	59.16	0.91	7571.19	0.195	88.3
45	Silver Creek	2425.39	21.44	1801.14	15.89	6883.64	60.65	181.69	20.68	1.59	11410.52	0.223	89.3
46	Pipestone Creek	215.94	2.78	1634.57	21.06	5745.00	73.80	151.00	13.79	1.92	7857.94	0.206	107.9
47	Portage River	884.45	9.90	1281.41	14.32	6746.87	75.30	21.79	1.56	0.24	9035.59	0.177	87.7
48	Nottawa Creek	329.58	7.34	547.75	12.18	3600.49	79.85	10.01	1.56	0.22	4588.76	0.174	90.3
49	Little Portage Creek	100.52	0.98	1412.40	13.74	8684.77	84.39	64.27	14.01	0.62	10375.09	0.170	95.3
50	Coldwater River	161.68	5.26	590.45	19.17	2322.20	/4.93	0.22	0.00	0.01	31/3.91	0.157	83.3
51	Dowagiac Creek	3757.72	25.21	2825.91	18.93	8258.23	55.24	61.38	2.45	0.41	15005.07	0.197	75.2
52	Pipestone Creek	11/8.00	4.91	45/9.90	19.08	18186.39	75.70	53.15	3.56	0.22	24100.68	0.199	105.6
53	ROCKY RIVER	3830.00	13.93	6333.00	23.02	17296.38	62.81	37.81	2.45	0.14	27599.39	0.1/6	80.4
54	St. Joseph River	2233.02	7.96	43/3./4	15.59	21363.90	76.09	74.28	8.90	0.26	28153.47	0.167	85.3

55	Dowagiac River	4359.07	12.98	6940.35	20.65	21624.98	64.31	544.63	122.98	1.62	33689.95	0.206	92.6
56	Coldwater River	306.23	4.23	1568.07	21.66	5331.36	73.41	23.35	7.34	0.32	7335.65	0.156	82.9
57	Soap Creek	321.35	3.96	1403.73	17.27	6364.36	78.14	32.25	1.56	0.39	8222.61	0.156	84.0
58	S Br Hog Creek	554.86	6.23	1972.82	22.13	6355.91	71.13	5.11	18.68	0.06	9006.88	0.152	78.8
59	St. Joseph River	1459.10	9.75	2340.21	15.63	11079.47	73.93	70.05	12.45	0.47	15060.60	0.173	85.3
60	St. Joseph River	907.35	9.23	1044.79	10.62	7724.27	78.45	141.44	7.78	1.43	9923.95	0.185	90.8
61	Beebe Creek	1288.31	10.92	2814.12	23.82	7694.92	65.01	4.23	0.00	0.04	11901.32	0.154	73.8
62	St. Joseph River	1272.96	6.41	3730.59	18.77	13911.38	69.92	694.30	260.64	3.48	19964.98	0.179	83.8
63	S Br Hog Creek	755.46	5.06	2367.12	15.83	11594.53	77.48	149.89	77.39	1.00	15042.75	0.166	85.7
64	Big Meadow Drain	353.16	3.57	1589.64	16.07	7363.11	74.34	531.29	48.26	5.32	9979.44	0.237	113.9
65	Portage River	1834.05	7.79	3439.93	14.60	17797.43	75.49	419.21	61.38	1.77	23649.87	0.184	90.7
66	Dowagiac Creek	926.92	9.45	2912 20	29.66	5390 29	54 74	422.76	156.34	4 27	9902.36	0.209	88.8
67	Mud Creek	553.08	4 38	1802.47	14.26	8535.11	67.44	1410 17	335.81	11.08	12722 72	0.223	92.2
68	St Joseph River	082.52	6.92	2461.86	17.32	10731 21	75.40	28.24	3.56	0.20	1/307.02	0.165	85.4
69	St. Joseph River	1030 56	7.65	2101.00	16.25	9605.25	71 15	504 38	1// 55	3.72	13570.00	0.103	110.0
70	Bocky Biyor	3601.00	14.61	7112.03	29.12	14268 32	56.35	190.03	15.57	0.72	25375.03	0.173	75.7
70	Booko Crook	1469.22	0.79	2512.00	20.12	0060.52	66.39	F0.03	6.67	0.74	25375.95	0.175	75.2
71	Deebe Cleek	1400.22	9.76	3013.96	23.40	9909.32	00.20	30.93	0.07	0.34	7702.00	0.100	75.5
72	St. Joseph River	1021.44	13.39	1233.15	10.14	5111.60	60.76	203.71	0.93	2.64	1123.38	0.193	84.8
73	Dowagiac Creek	2037.54	8.78	5046.25	21.75	16080.13	69.24	19.79	9.79	0.08	23293.27	0.181	90.1
74	St. Joseph River	1335.01	8.57	3021.39	19.39	10665.60	68.35	413.65	140.77	2.64	15672.73	0.228	106.3
75	Sand Creek	967.62	7.18	3435.93	25.49	9009.46	66.71	54.71	5.78	0.40	13572.87	0.150	/5./
76	Spring Creek	1138.19	5.30	2967.57	13.82	17346.42	80.73	14.68	1.56	0.07	21568.27	0.170	90.9
77	Rocky River	1601.88	9.03	4972.20	28.01	10569.53	59.44	341.15	259.31	1.91	17840.53	0.180	81.6
78	Dowagiac River	2180.31	12.46	3304.94	18.87	11966.14	68.25	35.36	16.01	0.20	17602.33	0.203	95.9
79	E Br Sauk River	393.19	3.74	1660.59	15.79	7893.73	74.94	440.55	125.65	4.15	10608.18	0.184	89.1
80	Coldwater River	2134.28	11.06	3164.16	16.39	13271.12	68.68	592.89	132.32	3.06	19390.91	0.182	81.9
81	Prairie River	219.94	4.65	341.59	7.21	4170.26	87.90	0.89	0.00	0.02	4832.44	0.177	96.3
82	St. Joseph River	638.04	7.68	2030.20	24.41	3819.99	45.79	1455.10	366.28	17.35	8387.48	0.251	84.8
83	Christiana Creek	2106.48	13.76	3368.54	21.99	9736.68	63.46	86.51	8.45	0.56	15405.87	0.182	82.7
84	Little Swan Creek	807.94	3.86	3127.69	14.96	16946.56	80.98	24.69	2.00	0.12	21008.68	0.164	89.1
85	Marble Lake	1195.35	9.67	1882.75	15.22	8997.68	72.63	263.53	24.24	2.11	12461.06	0.172	81.8
86	Paradise lake	1589.87	17.82	2830.14	31.67	4440.02	49.50	50.26	9.56	0.56	9018.83	0.169	69.2
87	Hickory Creek	1163.32	3.61	7075.56	21.98	18729.69	58.14	4695.99	523.06	14.55	32271.35	0.285	110.7
88	Diamond Lake	1390.16	14.83	937.37	9.98	6526.70	69.44	376.95	143.66	3.98	9469.10	0.230	96.8
89	Mill Creek	2656.67	16.81	5757.45	36.39	7319.74	46.16	65.61	3.34	0.41	15902.18	0.158	64.8
90	Pokagon Creek	1069.25	5.03	4741.58	22.28	15389.17	72.25	58.04	15.57	0.27	21373.16	0.183	96.1
91	Prairie River	955.61	5.83	1970.38	12.02	13231.76	80.63	211.05	23.57	1.28	16490.84	0.181	93.3
92	S Br Hog Creek	880.44	4.91	3214.43	17.91	13842.67	77.03	7.56	1.78	0.04	18046.72	0.155	82.9
93	Prairie River	1870.30	15.15	2607.52	21.10	7664.89	61.91	183.03	19.57	1.47	12443.46	0.176	76.8
94	St. Joseph River	1088.15	8.67	2287.50	18.22	8597.60	68.38	422.32	151.23	3.34	12642.07	0.194	88.6
95	Swan Creek	2257.26	13.56	2664.90	16.00	11427.95	68.54	253.08	40.25	1.51	16741.55	0.179	81.0
96	S Br Hog Creek	1067.25	8.24	2175.64	16.80	9460.69	72.94	234.40	6.89	1.80	13042.86	0.166	81.3
97	Dowagiac River	709.65	5.41	2686.69	20.49	9148.46	69.66	437.00	125.65	3.31	13203.01	0.220	105.4
98	St. Joseph River	1401.95	8.81	4278.34	26.87	9534.30	59.78	559.09	139.66	3.49	16008.80	0.223	99.3
99	Prairie River	2130.94	17.51	3240.89	26.60	6753.32	55.30	36.25	6.00	0.30	12266.82	0.164	69.4
100	Swan Creek	2339.77	6.76	5345.81	15.44	26517.78	76.56	388.52	21.13	1.12	34711.77	0.168	85.5
101	Coldwater River	1958.37	13.97	2267.04	16.15	9681.08	68.90	50.26	63.83	0.36	14119.60	0.172	79.2
102	Mudd Lake Exit Drain	677.18	7.80	3024.50	34.83	4935.28	56.60	34.92	4.89	0.40	8776.00	0.165	80.6
103	Christiana Creek	3822.88	14.97	6417.51	25.12	15240.61	59.60	40.47	12.01	0.16	25633.17	0.177	78.7
104	Mill Creek	1089.04	9.01	2921.54	24.14	8076.98	66.62	3.34	0.22	0.03	12190.89	0.165	81.9
105	St. Joseph River	1298.54	5.42	5393.18	22.49	16013.41	66.71	969.62	303.34	4.03	24072.70	0.232	108.2
106	Prairie River	1161.54	6.05	2125.83	11.06	15560.63	80.93	314.90	46.48	1.63	19307.42	0.179	91.2
107	Fawn River	638.70	3.63	2282.17	12.96	14593.90	82.84	74.50	12.01	0.42	17700.71	0.173	93.8
108	Sherman Mill Creek	2182.76	14.35	3062.53	20.11	9692.42	63.57	237.96	37.81	1,55	15311.50	0,177	78.1
109	Fisher Creek	346.26	3.47	1618.33	16.21	8016.05	80 15	0.89	0.44	0.01	10081 80	0.157	85.9
110	St. Joseph River	224 61	4,96	761 69	16.81	1931.01	42 45	1271 85	338 26	27 70	4591.63	0.421	129.5
111	Coldwater Lake	2712 49	21.82	2301 74	18.48	7182.53	57.58	199 71	36.92	1.59	12531.26	0.179	70.2
112	St Joseph River	945.82	5.57	2688 70	15.40	12957 55	76 19	345.82	48.04	2.02	17083 51	0.181	91.2
	00000pii i 1110i	0.0.02	0.07					0.0.02		02		0.101	

				T									
113	Christiana Creek	1819.37	13.37	2709.60	19.89	8812.87	64.60	244.63	21.57	1.78	13705.91	0.187	83.5
114	Prairie River	1304.76	7.28	1792.91	10.00	14800.72	82.52	18.90	0.67	0.10	18017.77	0.171	89.4
115	St. Joseph River	240.18	5.00	1519.81	31.59	2387.36	49.29	471.24	188.14	9.63	4892.61	0.269	104.9
116	Prairie River	2028.64	17.84	1465.33	12.87	7849.92	68.86	14.46	11.12	0.13	11469.04	0.176	77.8
117	Tallahassee Drain	809.28	4.34	3323.40	17.80	14480.48	77.49	42.25	9.79	0.23	18764.82	0.158	84.6
118	Himebaugh Drain	825.51	10.66	1034.78	13.34	5882.44	75.71	0.67	2.67	0.01	7845.77	0.170	84.2
119	Fawn River	1181.11	11.02	1852.51	17.27	7648.66	71.20	27.80	4.45	0.26	10814.02	0.168	81.6
120	St. Joseph River	435.66	10.22	1197.13	28.02	2591.96	60.28	32.69	4.45	0.75	4360.40	0.163	76.8
121	Nve Drain	53.60	0.67	593.11	7.40	5334.91	66.52	1364.59	665.84	16.87	8086.63	0.305	115.5
122	Brandywine Creek	818.40	5.40	4039.71	26.65	9353.95	61.61	815.73	123.87	5.35	15245.31	0.210	94.7
123	McCov Creek	1208.24	8.08	3391.00	22.67	9285.45	61.98	803.50	261.75	5.34	15042.68	0.245	105.6
124	Trout Creek	3379 44	17.28	6435.52	32.88	9528.97	48.60	193.92	17 79	0.99	19654 41	0.166	67.4
125	Crooked Creek	1442.20	18.09	1128 /1	1/ 12	5215.27	65.16	136.77	48.70	1 70	8068 73	0.184	77.3
125	Lippamod Tributary	1006.16	12.40	697.41	7 77	6021.22	79.22	30.17	96.20	0.44	8038.62	0.196	99.1
120	Eawo Pivor	820.74	5.99	1454.65	10.20	11724.40	92.07	16.46	80.25	0.44	14214 24	0.100	94.0
127	Fawii River	029.74	0.00	1454.05	10.30	7422.40	62.97	1646 59	09.00	11.05	14214.24	0.179	94.0
120	St. Joseph River	229.73	1.00	4043.27	29.32	1422.71	34.00	1040.30	352.49	11.95	15760.05	0.200	102.7
129	Fawn River	1643.02	10.92	1982.16	13.17	11230.25	74.58	21.57	158.79	0.14	15140.46	0.179	86.0
130	FISN Lake	2176.98	9.70	3482.41	15.51	16226.69	12.22	298.00	260.20	1.32	22541.69	0.187	88.5
131	Fawn River	1017.43	6.69	1245.16	8.18	12699.14	83.43	42.25	202.15	0.28	15304.45	0.186	95.0
132	VanNatta Ditch	977.40	14.04	775.25	11.12	5162.12	73.90	31.36	13.79	0.44	7058.98	0.182	84.9
133	St. Joseph River	812.61	7.66	2293.73	21.61	7218.78	67.89	161.90	117.20	1.51	10701.39	0.179	85.6
134	Petersbaugh Creek	736.78	7.01	1444.42	13.74	7302.40	69.36	806.39	217.72	7.61	10597.81	0.225	96.5
135	Ryan Ditch	486.81	6.12	839.52	10.55	6610.32	82.99	7.34	4.89	0.09	8048.55	0.168	89.1
136	Christiana Creek	347.15	8.43	590.45	14.31	2107.59	50.92	743.45	328.03	17.74	4190.32	0.320	108.0
137	Snow Lake	2123.82	12.10	3213.09	18.29	11316.76	64.37	461.68	435.88	2.62	17646.00	0.192	82.7
138	Juday Creek	161.23	0.71	2903.08	12.85	15593.99	68.96	3284.03	656.94	14.48	22681.79	0.268	109.6
139	St. Joseph River	321.35	2.16	2088.24	14.04	11834.93	79.47	428.32	203.26	2.86	14971.78	0.194	98.8
140	Cobus Creek	1248.94	5.53	4288.12	19.00	15594.65	69.03	1125.74	308.68	4.97	22659.70	0.206	94.8
141	St. Joseph River	213.05	3.82	1014.32	18.19	4028.15	72.01	260.64	56.04	4.60	5666.22	0.193	92.1
142	Fawn River	668.95	9.01	459.68	6.18	6183.78	83.10	88.07	25.35	1.17	7524.12	0.183	91.1
143	Crooked Creek	2302.63	21.11	2178.31	19.94	6088.82	55.62	218.83	116.75	1.99	11002.01	0.184	71.2
144	Little Elkhart River	851.53	6.71	3054.75	24.07	8592.70	67.58	99.63	85.84	0.78	12782.82	0.167	83.1
145	St. Joseph River	306.90	2.72	1717.30	15.21	6017.87	53.23	2424.27	820.84	21.34	11358.34	0.327	112.8
146	St. Joseph River	377.62	3 17	1036 56	8 69	4815.63	40.35	3687.67	2006 40	30.79	11976.09	0.506	152.9
147	Lake Shipshewana	913.80	7 25	1251.83	9.93	10086.28	79.95	217.28	129.21	1 71	12695.53	0.190	93.6
148	Tamarack Lake Outlet	2670.68	17 44	2102.92	13 72	9889 24	64 45	316.68	332.25	2.06	15407 39	0.198	81.3
140	Pigeon Lake	651.60	6.26	783.04	7.51	8717.47	83.57	213 72	51.37	2.00	10514 53	0.187	94.3
150	St Joseph River	671.84	5.59	028.02	7.01	4545.97	37.60	3508.65	2282.12	20.00	12000.48	0.466	130.6
150	Bigoon Loko	671.04 525.51	2.50	1510.02	10.70	4343.07	37.09 95.05	12 70	2003.10	29.00	12099.40	0.400	01.2
151	Clina Lake Outlet	223.31	3.75	2001.92	17.05	11910.33	60.05	13.79	29.30	0.10	14095.72	0.167	91.2
152	Groop Lake	1732.64	12.00	2424 72	17.90	07/0.90	60.00	6.00	4.40	0.19	1/019/7	0.107	79.9
103	Green Lake	1132.04	12.45	2424.12	7.00	9749.60	09.90	0.00	5.50	0.04	7012.00	0.105	70.0
104	Lille Eiknan	652.00	1.70	2420 47	12.20	0227.01	09.90	0.01	13.12	0.11	10020 45	0.174	90.1
155	Pine Creek	653.60	3.31	2429.17	12.30	16168.42	81.83	381.62	109.19	1.92	19839.45	0.183	95.4
156	Emma Creek	152.11	1.25	004.95	5.48	11292.30	93.09	11.34	3.56	0.09	12224.08	0.174	99.3
157	Buck Creek	719.43	3.68	1558.51	7.97	17259.91	88.19	20.24	0.67	0.10	19658.59	0.173	95.2
158	Otter Lake	613.13	5.79	1425.52	13.45	8513.53	80.24	36.69	2.00	0.34	10690.36	0.165	86.9
159	Mongo Reservoir	913.13	8.07	1749.54	15.44	8651.42	76.25	6.67	1.33	0.06	11421.86	0.164	84.1
160	Yellow Creek	273.98	3.08	957.61	10.78	4675.97	52.57	2155.63	818.40	24.09	8948.02	0.348	115.6
161	E Fly Creek	1530.49	9.44	2205.00	13.59	12440.05	76.60	32.69	8.67	0.20	16316.53	0.170	85.0
162	Baugo Creek	354.04	3.07	854.64	7.40	9935.72	86.03	260.86	133.43	2.24	11635.21	0.201	103.8
163	Mud Creek	749.01	6.05	1248.50	10.08	9731.79	78.50	468.13	184.14	3.75	12476.19	0.194	92.4
164	Hogback Lake	1673.93	13.04	2102.92	16.37	8866.24	68.92	64.72	127.21	0.50	12933.35	0.175	80.5
165	Rock Run Creek	109.86	0.84	882.22	6.77	11970.81	91.85	43.81	18.01	0.33	13124.19	0.176	100.0
166	Fly Creek Headwaters	314.24	2.84	909.35	8.20	9430.00	84.99	342.70	87.62	3.07	11179.95	0.188	96.2
167	St. Joseph River	607.12	2.90	3262.68	15.58	8409.01	40.13	6660.36	1998.62	31.72	20996.40	0.405	121.7
168	Grimes Ditch	206.60	1.65	821.29	6.55	11510.02	91.68	8.01	0.67	0.06	12646.45	0.184	104.5
169	Emma Lake	128.76	1.46	388.52	4.40	8307.60	93.98	9.34	0.00	0.10	8934.05	0.175	99.4
170	Little Elkhart Creek	1432.86	15.21	889.56	9.43	7050.87	74.67	39.14	6.00	0.41	9517.75	0.180	83.3
-					-			-	-	-	-	-	

171	Big Turkey Lake	930.92	8.50	1065.47	9.72	8857.57	80.70	95.41	8.23	0.86	11056.51	0.174	87.6
172	Leedy Ditch	503.94	3.47	1522.26	10.49	10303.33	70.93	1995.51	186.59	13.67	14596.51	0.239	98.3
173	Johnson Ditch	164.57	2.56	233.95	3.63	5840.63	90.65	89.40	108.53	1.37	6533.92	0.191	100.4
174	Pigeon Creek	847.53	8.26	1196.24	11.65	8046.51	78.30	147.00	19.35	1.42	10354.84	0.175	86.7
175	Baugo Creek	173.24	1.63	504.38	4.76	9797.39	92.36	48.48	77.84	0.45	10700.08	0.189	104.7
176	Rock Run Creek	299.11	2.07	878.89	6.08	11504.68	79.54	1011.87	761.02	6.96	14543.26	0.245	109.6
177	Elkhart River	577.99	11.72	382.96	7.75	2028.20	40.96	1486.23	456.79	29.77	4992.59	0.376	108.4
178	Little Elkhorn River	115.87	0.96	371.17	3.08	11270.73	93.36	159.45	151.67	1.31	12166.27	0.191	103.5
179	Little Turkey	1540.50	12.41	1638.57	13.19	9179.15	73.79	49.15	6.67	0.39	12513.42	0.171	81.7
180	Yellow Creek Headwaters	190.14	1.19	1008.32	6.31	14744.90	92.25	28.91	3.78	0.18	16075.80	0.178	101.5
181	Little Elkhart Creek	2538.14	18.20	1466.44	10.50	9625.26	68.88	272.43	43.14	1.94	14042.99	0.188	80.0
182	N Branch Elkhart River	1046.57	11.11	1047.01	11.11	7284.83	77.18	35.14	2.67	0.37	9515.62	0.175	85.4
183	Turkey Creek Headwaters	382.51	3.32	741.67	6.44	10297.99	89.41	69.39	16.01	0.60	11606.75	0.173	94.5
184	Stony Creek	354.71	2.86	638.04	5.14	11222.91	90.39	142.11	49.82	1.14	12505.98	0.183	99.1
185	Rowe Eden Ditch	102.74	0.50	910.91	4.39	19664.84	94.78	27.58	36.03	0.13	20841.76	0.176	101.3
186	Dry Run	252.64	6.62	366.94	9.60	3166.17	82.67	27.13	0.89	0.69	3912.66	0.176	91.6
187	Little Elkhart Creek	859.54	7.07	1610.77	13.24	9586.34	78.69	88.96	16.90	0.73	12261.50	0.168	86.2
188	Baugo Creek	149.00	1.02	590.67	4.06	13372.98	91.86	295.78	143.89	2.02	14649.26	0.197	106.0
189	Middle Branch Elkhart River	1567.63	14.32	1294.75	11.81	7838.80	71.44	170.80	74.50	1.55	11044.05	0.184	82.5
190	Swoveland Ditch	645.82	5.59	602.90	5.22	10030.01	86.80	163.01	102.74	1.40	11642.10	0.193	98.8
191	Dausman Ditch	89.62	1.12	375.17	4.70	7504.77	93.91	13.34	2.45	0.17	8085.09	0.178	101.5
192	Whetten Ditch	924.92	6.74	883.56	6.44	11531.59	83.97	314.90	64.49	2.28	13816.61	0.190	95.1
193	Sparta Lake	285.33	6.92	260.20	6.30	3521.10	85.13	46.26	10.01	1.10	4221.24	0.182	93.3
194	Meyer/Hire Ditch	240.18	2.77	568.65	6.55	7859.48	90.52	4.23	0.89	0.05	8773.27	0.173	96.9
195	Berlin Court Ditch	98.74	0.85	422.32	3.66	10131.64	87.69	609.13	287.77	5.23	11641.80	0.220	107.9
196	Waldron Lake	1939.91	11.49	1413.07	8.37	13366.53	79.11	65.83	91.40	0.39	16975.70	0.180	87.3
197	N Branch Elkhart River	1176.44	6.13	1272.52	6.63	16693.71	86.93	21.13	27.13	0.11	19290.61	0.175	93.0
198	Henderson Lake Ditch	1019.21	8.14	1135.75	9.06	8344.30	66.52	1309.65	718.54	10.38	12611.16	0.254	99.2
199	Kieffler Ditch	363.16	3.33	609.57	5.59	9695.76	88.89	133.88	96.29	1.22	10996.48	0.188	99.7
200	Elkhart River	700.75	4.47	658.72	4.20	13468.61	85.91	592.22	248.19	3.76	15763.07	0.204	100.0
201	Turkey Creek	654.49	4.91	1041.45	7.81	11169.09	83.70	278.43	188.14	2.07	13428.03	0.193	97.0
202	S Branch Elkhart River	519.95	10.28	708.98	13.98	3732.37	73.41	79.84	18.68	1.55	5157.49	0.176	83.7
203	Croft Ditch	872.66	5.51	1284.75	8.10	13356.08	84.20	237.07	97.63	1.49	15945.99	0.180	92.4
204	S Branch Elkhart River	2295.95	13.43	1760.44	10.29	12984.91	75.84	40.03	15.57	0.23	17196.46	0.176	83.8
205	Lake Wawasee	4982.87	25.61	2394.03	12.29	10771.01	55.25	1145.75	163.23	5.86	19550.05	0.214	74.3
206	Omar Neff Ditch	69.39	0.72	232.84	2.42	9315.03	96.83	0.00	0.00	0.00	9717.22	0.178	102.8
207	Dewart Lake Outlet	1199.79	13.10	856.42	9.34	6983.71	76.09	98.07	18.01	1.06	9254.55	0.184	86.2
208	Solomon CreekHeadwaters	242.18	1.57	762.13	4.95	14321.03	92.92	53.37	27.35	0.34	15505.50	0.175	98.5
209	Turkey Creek Headwaters	714.32	7.44	826.62	8.60	8020.05	83.37	38.25	4.89	0.39	9703.54	0.175	90.5
210	Rivir Lake	839.08	7.14	2324.20	19.75	8594.26	72.92	1.33	0.22	0.01	11858.90	0.156	80.6
211	S Branch Elkhart River	1037.89	9.43	1159.99	10.53	8770.39	79.53	34.69	4.45	0.31	11106.91	0.172	86.3
212	Carrol Creek	1185.78	10.48	1108.39	9.78	8925.85	78.72	83.40	14.68	0.73	11417.08	0.176	86.4
213	Coppes Ditch	99.85	0.79	422.76	3.33	12038.19	94.87	107.41	16.90	0.84	12784.11	0.180	101.6
214	Little Elkhart	907.35	7.16	1308.77	10.32	9933.05	78.29	304.23	216.16	2.38	12/65.34	0.198	95.2
215	S Br Paw Paw River	1619.44	10.58	34/1.51	22.67	9597.02	62.58	404.75	210.16	2.63	15398.71	0.204	90.6
216	St. Joseph River	851.31	6.99	1328.34	10.91	6905.21	56.65	2230.35	856.42	18.21	12246.18	0.314	109.4
217	St. Joseph River	793.49	4.49	2091.80	11.82	11929.89	67.38	2066.45	808.61	11.63	17773.92	0.266	106.9

APPENDIX A

Preparation of Model Inputs

KIESER & ASSOCIATES

APPENDIX A Preparation of Model Inputs

1.0 Introduction

This appendix describes the methods used to prepare data within a geographic information system (GIS) used in the nonpoint source (NPS) sediment and phosphorus loading model for the St. Joseph River watershed. This information is presented as follows:

Section 2.0	Subwatershed Boundaries
Section 3.0	Land Use/Land Cover
Section 4.0	Precipitation Data

Calculation methods for storm water runoff and NPS loads, and model calibration are presented in Appendix B.

2.0 Subwatershed Boundaries

Existing subwatershed boundaries available from the Michigan Center for Geographic Information were utilized in early efforts of the watershed management planning process. However, large portions of the Indiana portion of the watershed were left undelineated. Specifically, the Elkhart River and Pigeon River Subwatersheds were not delineated into smaller drainage areas, as other subwatersheds have been.

Subwatershed boundaries for the Indiana portion of the watershed were obtained from the U.S. Geological Survey (USGS). Those boundaries were combined with the Michigan delineation to provide a template for a basin-wide subwatershed boundary delineation using 30-meter Digital Elevation Model (DEM) acquired from the Michigan Department of Natural Resources (for the Michigan portion of the watershed) and the Indiana Geological Survey (for the Indiana portion of the watershed).

The U.S. Environmental Protection Agency's BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) Version 3.0, a GIS-based platform, was utilized to conduct the delineation. Besides calculating flow diversion and flow accumulation, the delineation process in BASINS 3.0 also used available stream network datasets to improve hydrographic segmentation and determine subwatershed boundaries (USEPA, 2001). The delineation resulted in 229 subwatersheds. So that no unrecognized subwatersheds were delineated for this planning effort, the Michigan and Indiana delineations were used as a guide to compare to the DEM delineated subwatersheds. Twelve additional subwatersheds created with the DEM process were identified and combined with the appropriate adjacent subwatershed. This resulted in the delineation of 217 subwatersheds. The DEM delineation resulted in some variation in the locations of subwatershed boundaries, particularly near the outer (headwater) regions of the watershed. Further, the Michigan delineation contained additional small subwatersheds not delineated by the DEM data. However, the DEM delineation was utilized for the model and associated planning efforts, as it presented a continuous dataset across the watershed.

The subwatershed boundaries used in the NPS model are presented in Figure 3 of this report.

3.0 Land Use/Land Cover

Land Use/Land Cover dataset for the St. Joseph River Watershed was produced from USGS National Land Cover Dataset raster files. Data was available for each Michigan county and for the State of Indiana. Each Michigan county dataset was presented in the Michigan Georef projection. The Indiana data file was available in the Universal Transverse Mercator (UTM) projection.

Each Michigan county file was "mosaiced" together to create one seamless file encompassing the eight Michigan counties in the watershed. That file was then reprojected to the UTM projection. The resulting file was then "mosaiced" with the Indiana land cover file. The resulting land cover dataset was clipped by the St. Joseph River Watershed boundaries.

4.0 Precipitation Data

In 2001, Kieser & Associates conducted a phosphorus NPS modeling effort for the Kalamazoo River Watershed, which lies adjacent to the St. Joseph River Watershed to the north. As a part of that effort, monthly precipitation data spanning from January 1949 to December 1999 were collected from 15 gauges across Michigan and Indiana. The gauge coverage, chosen to lie within 100 miles of the Kalamazoo River Watershed, also encompassed the St. Joseph River Watershed.

The fifty-year dataset was utilized to determine the average annual precipitation depth at each gauge. An estimation method called "kriging" was then utilized in the GIS to spatially interpolate the data from each gauge. A continuous grid of average annual precipitation values resulted. The region of the grid overlapping the St. Joseph River Watershed was utilized to determine the average annual precipitation for each subwatershed. The subwatersheds were mapped with the precipitation grid in the GIS. The average precipitation value that lay within each subwatershed was then determined using the GIS and input into the NPS model.

5.0 References

- USEPA. BASINS 3.0 User's Manual. 2001. Available at: http://www.epa.gov/waterscience/basins/bsnsdocs.html.
- Indiana Geological Survey. GIS Atlas. Source of land cover data for Indiana. http://igs.indiana.edu/arcims/statewide/index.html
- Kieser & Associates. 2001. Non-point Source Modeling of Phosphorus Loads in the Kalamazoo River/Lake Allegan Watershed for a Total Maximum Daily Load. Prepared for Kalamazoo Conservation District.
- Michigan Center for Geographic Information. Geographic Data Library. Source of land cover data for Michigan counties. http://www.mcgi.state.mi.us/mgdl/

APPENDIX B

Nonpoint Source Loading Model

KIESER & ASSOCIATES

APPENDIX B Nonpoint Source Sediment and Phosphorus Loading Model

1.0 Introduction

This appendix describes the methods used to generate runoff and nonpoint source (NPS) sediment and phosphorus loads for the St. Joseph River Watershed. This information is presented as follows:

Section 2.0	Data Inputs
Section 3.0	Runoff Calculations
Section 4.0	Sediment and Phosphorus Load Calculations
Section 5.0	Model Calibration
Section 6.0	Sediment and Phosphorus Load Predictions
Section 7.0	Sensitivity Analysis

2.0 Data Inputs

Data used in the NPS sediment and phosphorus loading model for the St. Joseph River Watershed are described in detail in Appendix A. The various data sets used in the model are described briefly in the following paragraphs.

2.1 Subwatershed Boundaries

Subwatershed boundaries were delineated using 30-meter Digital Elevation Model (DEM) topographic data. The delineation was conducted using the U.S. Environmental Protection Agency's (USEPA) BASINS program, a GIS-based platform. Existing delineations from the Michigan Department of Environmental Quality (MDEQ) and USGS (for the Indiana portion) were used for comparison to the delineated subwatersheds and to name the subwatersheds by the water course flowing through them.

2.2 Land Use/Land Cover

Land use/land cover information for the watershed was obtained from the USGS National Land Cover Dataset. The data was interpreted from satellite data collected in the 1990s.

2.3 Precipitation Data

Annual average precipitation from a fifty-year dataset was spatially interpolated for the Kalamazoo River Watershed NPS model. Those data overlapped the St. Joseph River Watershed and were, therefore, used in this model. A continuous grid of precipitation values was available (Kieser & Associates, 2001). The average precipitation depth obtained from the grids falling within each subwatershed was utilized as the precipitation depth for that subwatershed in the NPS model.

3.0 Runoff Calculations

Runoff in the St. Joseph River Watershed NPS model was determined using the approach prescribed in the State of Michigan Part 30 - Water Quality Trading Rules (MI-ORR, 2002). Equation 1 describes the runoff calculation for each land use/land cover category in each subwatershed:

$$R_{L,i} = [C_P + (C_I - C_P)DCIA_f * IMP_L] * A_{L,i} * I_i \qquad Equation 1$$

Where,

Runoff coefficients C_P , C_I , and $DCIA_f$ selected for the model are discussed in Section 5.0. Values for percent impervious surface in each land use/land cover category are presented in Table B-1.

Land Use/Land Cover Category	Impervious Surfaces (%)
Forest and Open Space	0.5
Agriculture	0.5
Residential	30

90

100

Commercial/Industrial/

Water and Wetland

Transportation

Table B-1. Percent Impervious Surface in Land Use/Land Cover Categories

4.0 Sediment and Phosphorus Load Calculations

NPS sediment and phosphorus loading to Lake Michigan from the St. Joseph River was determined using the event mean concentration (EMC) approach. In this approach (also prescribed by the Part 30 - Water Quality Trading Rules), sediment and phosphorus loads are calculated from runoff volumes corresponding to a certain period of precipitation and polluant concentrations assigned to each land use/land cover category in each subwatershed. The EMCs used for this characterization are based on those determined from storm water pollutant monitoring conducted during the Nationwide Urban Runoff Program for the Rouge River, Michigan watershed (Wayne County, 1998) and are presented in Table B-2.

Land Use/Land Cover Category	Total Suspended Solid EMC (mg/L)	Total Phosphorus EMC (mg/L)
Forest and Open Space	51	0.11
Agriculture	216	0.37
Residential	79	0.43
Commercial/Industrial/ Transportation	100	0.32
Water and Wetland	6	0.08

 Table B-2. Event Mean Concentrations from the Rouge River, Michigan Applied to the

 St. Joseph River Watershed NPS Loading Model.

The following equation describes the method used to determine the NPS sediment and phosphorus loads from each land use/land cover category in each subwatershed:

$$M_{L,i} = EMC_L * R_{L,i} * K$$
 Equation 2

Where,

$$M_{L,i}$$
=annual pollutant load for land use/land cover L in subwatershed i (lbs/year) EMC_L =event mean concentration of storm water runoff from land use L (mg/l) $R_{L,i}$ =stormwater runoff from land use/land cover L in subwatershed i (in/year) K =0.2266, a unit conversion constant

The total sediment and phosphorus loads from each subwatershed are then determined using Equation 3:

$$M_i = \sum_{L=1}^{m} M_{L,i} \qquad Equation 3$$

Where,

 M_i = annual pollutant load for subwatershed *i* (lbs/year) m = number of land use/land cover categories

The total NPS sediment and phosphorus loads in the St. Joseph River Watershed can be determined from Equation 4:

 $M = \sum_{i=1}^{n} M_i$ Equation 4

Where,

M = annual pollutant load to Lake Michigan (lbs/year) n = number of subwatersheds in the St. Joseph River Watershed

5.0 Model Calibration

The primary uncertainties in the St. Joseph River Watershed NPS phosphorus loading model are runoff parameters and EMCs. The EMCs (Table B-2) used in the model were developed for a Michigan watershed (Rouge River) and are based on monitoring data. These concentrations represent the best available estimates of pollutant concentrations for various land use/land cover types. Selection of appropriate values for the runoff parameters C_P , C_L and $DCIA_f$ was the focus of the model calibration. Monitoring data collected by the USGS from 1970 - 1993 at Niles, Michigan was utilized in a published study (Robertson, 1997) to estimate loading of sediment and phosphorus from major tributaries to Lakes Michigan and Superior. Reported point source loads from 1990-1999, available from the Permit Compliance System through BASINS 3.0, in the watershed were averaged annually for sediment and phosphorus loading (USEPA, 2001). These loads were subtracted from the published watershed loads. The average annual loads published in the USGS report for the St. Joseph River minus loading from point sources were the target total loads for the model. Therefore, the model was calibrated to achieve specific published loads. Therefore, the value of the model is to compare subwatersheds relative to one another, but not to determine a total load for the entire watershed.

5.1 Runoff Coefficients

Table B-3 summarizes literature values for the runoff parameters used in the NPS model (see Equation 1). As indicated in the table, values for the coefficients can vary significantly.

To improve model predictions, the published load estimates minus point source contributions for the St. Joseph River were used as a target for the NPS model and values for the runoff parameters C_P , C_I , and $DCIA_f$ were determined using an iterative solution with the minimum values reported in the literature as initial conditions. The values resulting in a best fit to the target load estimate are provided in Table B-3.

Table B-3. Literature Values for Runoff Parameters

Source	C_P	C_I	$DCIA_f$
Generally accepted values ^a	0.20 ^a	0.95 ^a	0.50 ^b
Rouge River (Michigan) National Wet Weather Demonstration Project (Wayne County, 1998b)	0.03 to 0.08 ^c	0.90 ^c	0.57 ^{d,e}
Lake Allegan/Kalamazoo River NPS Phosphorus Loading Model	0.04	0.89	0.50
St. Joseph River NPS Loading Model	0.068	0.89	0.50

^aValues recommended in the State of Michigan Part 30 - Water Quality Trading Rules (MI-ORR, 2002)

^bWayne County, 1998b

^cBased on Storm Water Management Model (SWMM) calibration

^dValue based on field verification and SWMM calibration for individual subwatersheds

^eAverage of all land use/land covers

As indicated in Table B-3, the selected parameter values for the St. Joseph River NPS loading model correspond well with the range of literature values reported for each of the three parameters. The difference in the value selected (0.068) for the pervious area runoff coefficient C_P and that of the generally accepted value (0.20) recommended in the Part 30 - Water Quality Trading Rules is significant. However, given the highly-undeveloped and thereby highly-pervious nature of the St. Joseph River Watershed (88% forest, open space, and agriculture), a lower value for C_P is intuitive. The selected value for the impervious area runoff coefficient C_I is slightly lower than the literature values, while the selected value for the directly contributing impervious area factor $DCIA_f$ is on the low end of the literature values. As with the pervious area runoff parameter, the selected values for C_I and $DCIA_f$ represent the underdeveloped nature of the watershed.

5.2 Model Validation

Published tributary loading data indicate that the St. Joseph River Watershed annually contributes 104 kg/ha and 0.20 kg/ha of total suspended solids and total phosphorus, respectively, to Lake Michigan (Robertson, 1997). Point source loading of total phosphorus accounts for approximately 25% of the total load; total suspended solids loading by point sources is equal to 1.4% of the total load. The average NPS loading rates of each pollutant derived from the NPS model were compared to the published data as a check to the calibrations. Table B-4 illustrates those values and illustrates that the model closely corresponds to the published loading estimates. The NPS load model rates are approximately 2% greater than the published rates. However, Robertson estimates that the watershed area is 2,996,153 acres, while the delineation performed with the 30-meter topographic data yielded a watershed area of 2,970,014 acres. Calibrating the NPS model to a fixed published watershed load with a smaller watershed area resulted in a higher loading rate.

Table B-4. Comparison of published	l loading rates to NPS model rates.
------------------------------------	-------------------------------------

	Published Loading (kg/ha/year) ^a	Published Loading (lb/acre/year)	Published NPS Loading Accounting for Point Sources (lb/acre/year)	NPS Model Estimate (lb/acre/year)
Total Suspended Solids	102	90.7	89.4 ^b	91
Total Phosphorus	0.29	0.259	0.194 ^b	0.197

^a Robertson, 1997

^b 1.4% of the total suspended solid load is attributable to point sources. NPS loading is equal to 98.6% of 90.7 lb/acre. 25% of the total phosphorus loading is attributable to point sources. NPS loading is equal to 75% of 0.259 lb/acre.

6.0 Sediment and Phosphorus Load Predictions

The St. Joseph River Watershed NPS loading model was calibrated to published annual sediment and phosphorus loads for the river (Robertson, 1997). The model was utilized to compare NPS loading among subwatersheds. NPS sediment and phosphorus loading predictions for each subwatershed are presented in Table 2 and Figures 7 and 8 of this report. The following assumptions are inherent in the model predictions:

- C The Robertson load estimates, based on monitoring data from 1970-1993, to Lake Michigan are reasonable and representative.
- C St. Joseph River load includes instream (bedload and streambank) contributions.
- C Each land use category assumes the same storm water sediment and phosphorus concentrations throughout the watershed.
- C Runoff model parameters are held constant throughout the watershed.

7.0 Sensitivity Analysis

For each land use L in subwatershed *i*, the model gives the total annual pollutant load as:

$$M_{L,i} = [C_P + (C_I - C_P)DCIA_f * IMP_L] * A_{L,i} * I_i * EMC_L * K$$
 Equation 5

This sensitivity analysis looks at each adjustable term in the equation 5 while holding other terms in constant. A variation factor "=1.2 (a 20% increase of the value) is used for each term to examine the corresponding change of the result from Equation 5 with respect to a specific term. For example, when examining the sensitivity of the pervious area runoff coefficient C_P , we will determine the outcome of the following equation:

$$\frac{M_{L,i,a}}{M_{L,i}} = \frac{[a * C_P + (C_I - a * C_P)DCIA_f * IMP_L] * A_{L,i} * I_i * EMC_L * K}{[C_P + (C_I - C_P)DCIA_f * IMP_L] * A_{L,i} * I_i * EMC_L * K} \qquad Eq. 6$$

where $M_{L,i}$, " is the annual pollutant load for land use L in subwatershed *i* with an increased C_P. If Equation 6 has a value greater than "=1.2, the particular adjustable term examined is considered highly sensitive. If this value is between "=1.2 and greater than or equal to 1.1 (10% change), the adjustable term is considered sensitive. If Equation 6 yields a value smaller than 1.1, the adjustable term is considered not sensitive. In addition, this analysis looks at the sensitivity of the adjustable terms with regard to both land use types and subwatersheds, as implied by the subscript of $M_{L,i}$.

1. Subwatershed precipitation depth (I_i) :

Equation 5 indicates that I_i has a constant return to scale and a uniform effect on loading from every land use type. A 20% change (increase or decrease) in precipitation will lead to a 20% change in loading from all land use types within any particular subwatershed. Therefore, I_i is a sensitive term.

2. Event Mean Concentration of storm water runoff from land use $L(EMC_L)$

 EMC_L has mathematically the same effect on load calculations as precipitation I_i for a particular land use type. Therefore, it is a sensitive term for land use types. However, because EMC_L is a function of land use L that changes its distribution pattern from subwatershed to subwatershed, its sensitivity for subwatershed loading will vary among subwatersheds. For example, if we vary EMC_L for agriculture land by 20%, subwatersheds with a substantial agricultural land component will have a higher load change than those

composed mostly of urban land uses. On the other hand, if the 20% variation of EMCs is applied to all land use types, then all subwatersheds will have a change of pollutant load of 20%.

3. Pervious area runoff coefficient (C_P)

The rest of the four adjustable terms in Equation 5 are all included in the parentheses []. Within this set of parenthesis, IMP_L varies from land use to land use. The remaining three terms are constants across all land uses and subwatersheds. Therefore, when we consider the sensitivity of these constant terms, we also need to take IMP_L into account because (1) as Table B-1 shows, IMP_L can vary from 0.005 to 1, a span of two orders of magnitude, and (2) IMP_L changes with land use types and causes different sensitivity responses in subwatersheds with different land use distributions.

11	IMP_L	$M_{L,i}$, "/ $M_{L,i}$
1.2	0.005	1.19
	0.1	1.12
	0.2	1.08
	0.3	1.06
	0.9	1.02
	1.0	1.01

With the calibrated parameter (term) values, the following table is constructed for C_P sensitivity analysis.

This table shows that C_P is sensitive only when IMP_L is small (less than 0.2). This is because smaller IMP_L (imperviousness) means higher perviousness. Pervious area runoff coefficient, C_P consequently exerts more influence on the loading results. For a subwatershed that is predominantly agricultural or has large areas of forest and open space (see Table B-1), C_P is a very sensitive model parameter.

4. Impervious area runoff coefficient (C_I)

ш	IMP_L	$M_{L,i}$, "/ $M_{L,i}$
1.2	0.005	1.01
	0.1	1.08
	0.2	1.12
	0.3	1.14
	0.9	1.18
	1.0	1.19

With the calibrated parameter (term) values, the following table is constructed for C_I sensitivity analysis.

This table shows that C_I is sensitive only when IMP_L is high (greater than or equal to 0.2). This is just the opposite of C_P as higher IMP_L (imperviousness) means lower perviousness. Therefore, C_I is very sensitive in urban subwatersheds or subwatersheds with large areas of water and wetland.

5. Fraction of impervious area that is directly contributing $(DCIA_{f})$

With the calibrated parameter (term) values, the following table is constructed for $DCIA_f$ sensitivity analysis.

	IMP_L	$M_{L,i}$, "/ $M_{L,i}$
1.2	0.005	1.01
	0.1	1.07
	0.2	1.11
	0.3	1.13
	0.9	1.17
	1.0	1.17

This table shows that $DCIA_f$ is sensitive only when IMP_L is high (greater than or equal to 0.2). The influence of $DCIA_f$ (fraction of impervious area that is directly contributing) on loading is obviously positively correlated to the imperviousness of a land use type.

6. Fractional imperviousness of land use/land cover L (IMP_L)

Mathematically, IMP_L has the same sensitivity as $DCIA_f$ for each land use type. Therefore, IMP_L itself is sensitive only when its value reaches 0.2.

The most important implication of this sensitivity analysis is that except precipitation depth (I_i), land use distribution is the key factor deciding the sensitivity of these adjustable terms (parameters) on the modelcalculated pollutant load from a specific subwatershed. Therefore, on a subwatershed level, sensitivity of model parameters will vary significantly. In terms of the entire St. Joseph River Watershed, because of its high agricultural land use pattern, the pervious area runoff coefficient C_P is a very sensitive parameter. The EMC for agricultural land is also a sensitive parameter at this scale. However, no matter what scale at which we examine the model, precipitation depth I_i is always the most sensitive parameter.

8.0 References

- Kieser & Associates. 2001. Non-point Source Modeling of Phosphorus Loads in the Kalamazoo River/Lake Allegan Watershed for a Total Maximum Daily Load. Prepared for Kalamazoo Conservation District.
- Robertson, Dale M. 1997. Regionalized Loads of Sediment and Phosphorus to Lakes Michigan and Superior: High Flow and Long-term Average. J. Great Lakes Res 23(4):416-439.
- State of Michigan Office of Regulatory Reform (MI-ORR). 2002. Part 30 Water Quality Trading Rules. http://www.state.mi.us/orr/emi/arcrules.asp?type=Numeric&id=1999&subID= 1999-036+EQ&subCat=Admincode.
- USEPA. BASINS 3.0 User's Manual. 2001. Available at: <u>http://www.epa.gov/waterscience/basins/bsnsdocs.html.</u>
- Wayne County Rouge River National Wet Weather Demonstration Project (Wayne County). 1998a. "Urban Storm Water Quantification Protocols: Working Draft." Prepared for the Water Quality Trading Workgroup.
- Wayne County, Michigan. 1998b. User's Manual: Watershed Management Model Version 4.0 Technical Memorandum, Rouge River National Wet Weather Demonstration Project. RPO-NPS-TM27.01.

